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"FOREWORD

The project involved a study of the effects of pipe installation methods on pipe performance.
Both laboratory and full-scale field tests were conducted. Pipes used in the tests were donated
by Contech Construction Products, CSR/New England, Hancor, Inc., and Plexco/Spirolite, Inc.
These pipes are representative of those widely used in practice for drainage applications. The
results of the study, including a review of present practices, were used to develop
recommendations for improving installation practices. This work is important to pipe design
because proper design has to consider the effects of the installation process.
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CHAPTER 1
INTRODUCTION

1.1 Background

The long-term behavior of buried culverts and other gravity flow pipes is
significantly affected by installation practice. While designers often think of the design
process as design of a pipe, they are in fact designing a “pipe-soil system” where structural
performance depends on structural characteristics of both the pipe and the soil. Rarely, with
products in use today, can any rigid or flexible pipe carry all superimposed loads without
depending in some way on the surrounding soil for support. Bedding must be uniform to
prevent point loads, and lateral soil pressure at the sides of the pipe must be of sufficient
magnitude to restrain deformation. Even the loads imposed on a buried pipe are related to
the practices used at the time of construction. Thus, designing a buried pipe requires the
simultaneous design of the surrounding backfill. Further, if the backfill conditions are
important in the design phase, then, it becomes incumbent upon the designer and builder to
see that the backfill assumptions made in design are implemented in the field during
construction. This is the pipe-soil system design process.

Installation standards for buried pipe have not been thoroughly reviewed from a
geotechnical perspective for many years, and some current installation standards use
terminology that is outdated and unsuitable for current construction contracts. Also, many
industries have proposed their own design and installation standards, suggesting that
different types of pipes are fundamentally different and require separate treatment. This is a
situation which creates confusion for both designers and installers. Present practice in these
two areas needs to be reviewed for updating where necessary and for making standards as

uniform as possible across all types of pipes.

A great deal of effort has been expended by the pipe industry and others on the
development of mathematical models that describe pipe-soil interaction; however, most of
this work has been on the properties of soil after compaction and does not evaluate the soil
and pipe behavior that result from the application of compaction forces. Information is

needed to correct this deficiency.




The overall goal of this research is to develop a fundamental understanding of the
interactions between a buried pipe, the backfill soil around it, and the in situ soil in which
the pipe/backfill system is installed. This improved understanding can in turn be used to
develop more reliable and economical pipe installation and design methodologies based on
improving the control of installation procedures during construction. Development of
improved tools for use by designers in assessing the potential performance of installations is
also a goal.

1.2 Objectives

The overall objective of the research was to investigate the fundamental
interactions that take place during the process of excavating a trench, preparing the
subgrade, installing the pipe, and then placing and compacting backfill around it. The
materials and procedures used in this part of a pipe installation will strongly influence pipe
performance as the balance of the fill is placed above the top of the pipe. An improved
understanding of these fundamentals will aid designers in developing technically better and

more economical specifications.
Specific objectives of this research were to:

1. Examine current pipe installation practices;

2. Evaluate the implications of current pipe installation practices on pipe performance
and assess the potential benefit of new techniques;

Define bedding alternatives for buried pipe installations and their effect on pipe
performance;

(V)

4. Develop improved compaction specifications relating compacted soil density to soil
stiffness; and

5. Develop improved procedures for including installation effects in the design of
buried pipe.
1.3 Scope

This research investigated the interactions that take place during soil placement
around buried pipe and the soil properties that result from the installation process. This

included:




1.4

Gathering information through literature review and survey of individuals and
organizations involved in current projects;

Characterizing backfill materials in terms of desired soil properties for good pipe
support;

Conducting laboratory tests to study significant installation parameters in a
controlled environment;

Conducting full-scale field tests to evaluate findings from the literature review and
laboratory tests and to investigate pipe installation techniques; and

Completing analyses and evaluations of field results and synthesis of findings into
improved guidelines for design and installation of buried pipe.

Contents

Chapter 2 presents a review of the state of the art of current pipe installation

practice among users and manufacturers, and where appropriate, a review of the design

practice that is pertinent to installation. Chapter 3 describes the tests conducted on backfill

soils, compares soil models, and proposes a set of design soil moduli based on the

constrained (one-dimensional) modulus as a substitute for historical values based on the

modulus of soil reaction. Chapter 4 presents the procedures and results of the laboratory

and field tests conducted as part of this project to document installation behavior. Chapter

5 presents analysis of the field data with an idealized closed form elasticity solution for

buried pipe and with finite element modeling of the actual test conditions. Chapter 6

presents a discussion of several key issues that are touched on in multiple chapters of this

report. Finally, conclusions are drawn in chapter 7.







CHAPTER 2
STATE OF THE ART

This chapter presents the current state of the art of pipe installation practice based
on a review of the literature, a limited survey of current users and specifiers, and review of

current installation standards.

The technical literature related to buried pipe and culverts was collected by Selig,
et. al., in preparation for the NSF Pipeline Workshop, held at the University of
Massachusetts in 1987. This was compiled in an extensive document called "Bibliography
on Buried Pipelines.” The information provided in the bibliography will only be repeated
as is pertinent to this study.

While the intent of the proposed research was to study installation practices, it is
impossible to study the subject without also addressing pipe design practice because the two
areas are so closely related. Pipe designers make implicit assumptions about installation
materials and procedures to assess the pipe strength required for a given project. For
example, in the case of rigid pipe design, the selection of a bedding factor involves an
assumption of the lateral soil pressures applied to the pipe after installation. Thus, design

issues are addressed as required to evaluate installation practice.

Terminology used in this report is defined in Fig. 2.1. Definitions of important

terms follow:

Bedding is the soil on which the pipe is placed. The bedding may be in situ soil, but, in

areas where naturally occurring soils are variable, it is preferred to use placed soil.
Embedment zone backfill includes all backfill that is in contact with the pipe.

Foundation is the soil which supports the embedment zone backfill. It must provide a firm

stable surface and may be in situ soil or placed backfill. It may also serve as the bedding.

Haunch zone is the region of the backfill above the bedding and directly below the
springline of the pipe. It is a region where hand placement and compaction methods are

normally required for the backfill.




Initial backfill is the material placed at the sides and immediately over the pipe after it is

installed on the bedding.
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Figure 2.1 Standard Trench Terminology

Rigid Versus Flexible Pipe — This report uses the descriptive terms “rigid” and
“flexible” to describe two general classes of pipes. These terms have traditionally been
used to differentiate between a pipe with high flexural stiffness (rigid pipe) that carries load
primarily through internal moments, and a pipe with low flexural stiffness (flexible pipe)
carrying load through internal hoop thrust forces. Flexible pipe develop higher lateral soil
pressures at the sides than do rigid pipe. The flexural stiffness of a pipe is described by the
parameter EI/R>, where E is the modulus of elasticity of the pipe material, I is the moment
of inertia of the pipe wall, and R is the centroidal radius of the pipe. Concrete and clay
pipes are examples of a rigid pipe, with values of EI/R> on the order of 7 MPa to 70 MPa
(1,000 psi to 10,000 psi), while corrugated metal and plastic pipes are examples of a
flexible pipe with EI/R’ values on the order of 15 kPa to 700 kPa (2 psi to 100 psi). There




are two problems with this classification system: (1) the actual response of a system is a
function of the relative stiffness of the pipe and soil rather than just the pipe stiffness; and
(2) there are no true boundaries to the flexural stiffnesses covered by the classifications,
rather there is a transition region where both types of behavior contribute to the overall pipe
response. These issues will be discussed further in later chapters.

2.1 Current Design and Installation Practice

The state of the art of current installation practice was evaluated by a survey of
users, represented by the States and organizations that sponsored the project, public
standards such as American Water Works Association (AWWA), American Society of Civil
Engineers (ASCE), and American Society for Testing and Materials (ASTM), and the

recommended practices of pipe producers.
2.1.1 General

Rigid Pipe - The most commonly used installation specifications for rigid pipes are
derived from the work of Marston, Spangler, and others during the first half of the twentieth
century (1913, 1917, 1920, 1926, 1930, 1932, 1933, 1950, 1953). Bedding conditions
presented in current references such as the ASCE Manual of Practice No. 37, (ASCE,
1970), and the American Concrete Pipe Association's (ACPA) Concrete Pipe Design
Manual (ACPA 1987a), and Concrete Pipe Handbook (ACPA 1987b) continue to present
installation details based on this early work, (Fig. 2.2). These details are outdated in that
they include such vague terms for soils as “granular material,” “backfill,” “fine granular
fill,” and even “soil.” The compaction requirements in these beddings are also vague, using
terminology such as “densely compacted,” “carefully compacted,” “lightly compacted,”
“compacted,” and “loose.” This terminology of backfill materials and compaction levels are

difficult to interpret in modern construction contracts.

Heger (1988) proposed new "standard" installations for concrete pipes in the
embankment condition, based on parametric studies with the finite element computer
program SPIDA. These are called SIDD for Standard /nstallation Direct Design. The SIDD
installations have been adopted in ASCE Standard 15-93, “Standard Practice for Direct
Design of Buried Precast Concrete Pipe Using Standard Installations,” (ASCE, 1994),
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“AASHTO Standard Specifications for Highway Bridges,” 16th edition (AASHTO, 1996,
hereafter called the Standard Specifications), and the AASHTO LRFD Bridge Design
Specifications (AASHTO, 1994, hereafter called the LRFD Specifications). This approach
is embodied in the Heger pressure distribution, Fig. 2.3, which shows significant variations
in the pressure at the pipe-soil interface, particularly in the lower 180 degrees. Table 2.1
provides coefficients that describe the specific distributions for four standard installations.

A Type 1 installation is constructed with coarse-grained, well compacted materials, a Type 4
installation is constructed with little control of backfill type or compaction, and Types 2 and

3 installations represent intermediate quality. Specific backfill and material requirements for
each type of installation are presented in Fig. 2.4 and Table 2.2. Features of this approach

are:

] Soil types and compaction levels are defined in accordance with accepted soil
classification systems (AASHTO M 145 and ASTM D 2487), which are easily
cited in contracts.

. The area of reduced pressure in the lower haunch zone acknowledges that, even
with substantial effort during installation, it is unlikely that installers will achieve
the same level of soil compaction as at the sides and bottom of the pipe.

. As the quality of backfill and the compaction level decrease, the invert pressure

increases (note the relative values of the coefficients A1 and A2 which define the
relative portion of the total load in each zone) and the lateral pressure decreases
(note the coefficients A4, A5, and A6).

Liedberg (1991) has published detailed test results that evaluate the Heger work
and concluded that the work is valid for embankment installations. Heger's findings should
be applicable to pipes in trench installations as well, but the presence of trench walls and
the influence of preexisting soils will also influence the selection of appropriate bedding
conditions. In spite of the limited verification, the ASCE Standard 15-93 has incorporated
the results of Heger’s research and extended it to the trench condition. The trench
installation is more complex than the embankment case because of the less predictable
influence of the preexisting soils, the increased presence of groundwater problems, and the
restricted space in which to work. ASCE does require that trench installations be designed

for the embankment load condition that is conservative.
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Figure 2.3 Heger Pressure Distribution for SIDD Installations (Heger 1988)

Table 2.1
Design Coefficients for Heger Pressure Distribution (Heger 1988)

installation
Type VAF | HAF | A1 A2 | A3 | M | A5 A8 a b c o f u v

1 135{045]062]0.73]1135]/0.19|0.08 | 0.18] 1.4010.40|0.18 } 0.08 | 0.05{ 0.80 | 0.80
2 1401040{085}055{140]{0.15{0.08 {0.17 ] 1.45)040]0.18 0.10. 0.05)0.820.70
3 1401037 }11.05}035{1.40/0.10}0.10{0.17 } 145|036 10.20(0.12}0.05}0.85 j0.60
4 145|030 [ 1450001145000 {0.11]0.19]145}10301025;000] --~-- ]0.90 | ---a-
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Figure 2.4 SIDD Type Embankment Installation

Table 2.2

SIDD Requirements for Embankment Installations

ch ~ See Table 17.4A

=1 /- Lower Side ~ See Tadle 17.4A

Haunch and
Installatdon Type Bedding Thickness Quter Bedding Lower Side
Type 1 B./24" (600 mm) minimum, not less than 95% SW 90% SW, 95% ML,
3" (75 mm). If rock foundation, use B./12" or
(300 mm) minimum, not less than 6" 100% CL
(150 mm).
Type 2 B./24” (600 mm) minimurmn, not less than 90% SW 85% SW, 90% ML,
(See Note 3.) 3" (75 mm). If rock foundation, use B./12" or or
(300 mm) minimum, not less than 6" 95% ML 95% CL
(150 mm).
Type 3 B./24" (600 mm) minimum. not less than 85% SW, 90% ML, or 85% SW, 50% ML,
(See Note 3.) 3” (75 mm). If rock foundation. use B./12" 95% CL or
- (300 mm) minimum, not less than 6” 95% CL

Type 4

(150 mm).
No bedding required. except if rock
foundation, use B./12" (300 mm) minimum,
not less than 6 (150 mm).

No compaction required,
except if CL., use
' 85% CL

No compaction required,
except if CL, use
85% CL
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The SIDD method divides backfill soils into three general categories that use the
designations SW, ML and CL. The category names are the Unified Soil Classification
System (USCS) classifications (ASTM D 2487) of three soils characterized by Selig (1988)
and used in the development of the SIDD standard installations. Table 2.3 (AASHTO,
1996) suggests a grouping of all other USCS soil classifications and AASHTO (AASHTO
M 145) soil classifications into the three categories. The particular soils were selected as
having strength and stiffness properties on the lower end of other soils in the same

classification, thus they should be conservative in design.

Loads on rigid pipe in the SIDD system are computed using the Vertical Arching
Factor, or VAF. The VAF is the ratio of the total load on the pipe, taken as the springline
thrust, to the weight of the soil prism load. The soil prism load is the weight of the soil
directly over the pipe. The soil prism load, total load, and VAF are defined in equation

form as:
Wsp = YSDO(H +0.11Do) , 2.1)
w, =2T,, (2.2)
and
VAF hf: (2.3)
= s J
w
sp
where
W, = weight of soil prism over pipe, kN/m, 1b/ft,
Y, =  unit weight of soil, kN/m?, Ib/ft,
D, = outside diameter of pipe, m, ft,
H = depth of fill over top of pipe, m, ft,
W, = total load on pipe, m, ft,
Ty = thrust force at springline in pipe wall, kN/m, Ib/ft, and
VAF = vertical arching factor.

Suggested vertical arching factors for reinforced concrete pipes installed in
embankment conditions vary from 1.35 to 1.45 (see table 2.1).
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Table 2.3
Equivalent USCS and AASHTO Soil Classifications for SIDD Soil Designations (ASCE

1994)
Representative Soil Types Percent Compaction
SIDD Soit . Uscs AASHTO Standard Proctor Modified Proctor
Gravelly Sand SW, SP AlLA3 100 95
(SW) GwW, GP 95 90
90 85
85 80
80 75
61 59
Sandy Silt (ML) GM, SM, ML A2, A4 - 100 95
Also GC, sC 95 90
with less than 20% S0 85
passing No. 200 sieve ] 85 80
80 75
49 46
Silty Clay (CL) CL, MH, GC, sC AS5,A6 100 90
95 85
90 80
85 75
80 70
45 © 40
CH A7 100 . 90
95 85
90 30
45 40

Flexible Pipe — Historically, installation trench details for flexible pipe were less
detailed than those for rigid pipe. For example, ASCE Manual No. 37 (ASCE 1970)
contains no suggested trench details for flexible pipe. In recent years, installation standards
for flexible pipe in general and plastic pipe in particular have become far more detailed and
provide excellent guidance for the installation process and for evaluating the potential
support that can be derived from soil (see ASTM D 2321 and D 3839).

Flexible pipe design theories continue to rely on the work of Spangler (1941),
Watkins and Spangler (1958), and White and Layer (1960). Spangler developed the Iowa
formula for calculating pipe deflection under earth load, which uses the modulus of soil
reaction, E’, as the principal soil parameter. This formula is:
DKW

Ax = , 2.4)
EI/R> + 0.061E'
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where

Ax = change in horizontal diameter, m, in.,

D, = deflection lag factor,

K = bedding factor

W = load on pipe, MN/m, Ib/in.,

E = modulus of elasticity of pipe material, MPa, psi,
I = moment of inertia of pipe wall, mm*/mm, in.*in.,
R = centroidal radius of pipe, mm, in., and

E = modulus of soil reaction, MPa, psi.

While E’ has been used successfully, it is not a true soil property and efforts to
characterize it (Krizek, et al. 1971) have been unsuccessful. Howard (1977, 1996, see
section 2.3) showed that E’ is a function of soil density and soil type and provided a table
of values that have come into common usage; however, these values are back calculated
from field deflection measurements and undoubtedly represent the effects of installation
practices as well as soil behavior and pipe properties. Hartley and Duncan (1987) used the
close relationship between the one-dimensional modulus, M, and E’ to show that soil
stiffness varies with depth. The one-dimensional modulus represents the soil stiffness under
uniaxial strain conditions. It is related to Young’s modulus of elasticity, E,, and Poisson’s

ratio, v, through the relationship:

~ E(1-v)
oa+v)(1-2v)

2.5)

The Iowa formula also uses a bedding factor that is a function of the radial angle at
the bottom of the pipe over which a uniform soil pressure is applied to represent the soil
reaction. The bedding factor changes from 0.083 for 180 degree bedding to 0.110 for 0
degree bedding, thus, using the Iowa formula, a change from a high bedding angle to a
small bedding angle could increase the calculated deflection by about 33 percent.

White and Layer introduced the ring compression theory which assumes that the

load carried by a pipe is equal to the soil prism load (VAF = 1.0). This load assumption is
widely used for flexible pipe design.

14




Design and installation standards for flexible pipe generally divide soil types into
four or five general groups. ASTM D 2321 describes five soil “Classes.” Class I is
manufactured coarse graded material, Class II is gravel or sandy soil with less than 12
percent fines, Class III is gravel or sandy soil with 12 percent to 50 percent fines, and
Classes IV and V are silts and clays, and organic soils, respectively. Classes I to III are
considered good pipe backfills; some Class IV soils are acceptable as backfill under some
conditions. The Howard E’ table, noted above, classifies soils into four groups based on
field data on pipe performance. Soil properties are discussed in more detail in section 2.2.

2.1.2 State and Federal Practice

Each State develops its own pipe design and installation standards based on local
practice and conditions. Most States develop their own standards by adapting the general
design guidelines contained in AASHTO Standards, historically the Standard Specifications.
AASHTO has recently developed a load and resistance factor design method that is
incorporated in the LRFD Specifications. Not all States use these specifications as yet;
however, the culvert provisions are not substantially different. The following sections
present the practice of individual States and the overall AASHTO specifications.

2.1.2.1 Departments of Transportation

Current practice among State Departments of Transportation was evaluated by
surveying the practices of the project sponsors. This included 10 geographically diverse
States and the Eastern Federal Lands of the Federal Highway Administration. Each
organization was sent a questionnaire that inquired as to types of pipe used in highway
practice, design methods and standards, backfill materials, methods of installation, and

standards for controlling the quality of installations.

Design Practice — Questionnaire responses show that all but one respondent design
rigid pipe by indirect design methods (determination of an equivalent three-edge bearing
load). Some sponsors reference AASHTO and some reference ACPA literature.
Pennsylvania has recently adopted the new SIDD direct design method for concrete pipes,
and has developed fill height tables based on this method. California allows direct design
(design based on an assumed pressure distribution) as well as indirect design for concrete

pipes.
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All respondents use AASHTO Sec. 12 for design of corrugated metal pipe. Three
respondents include deflection checks for metal pipes even though not required by current
AASHTO Specifications.

Seven respondents design plastic pipes by AASHTO Sec. 18, and four respondents
limit plastic pipes to depths of fill between 3.5 m and 4.5 m (11 ft and 15 ft).

Other aspects of design practice from the questionnaire include:

] Eight use negative projecting installations but some do so only for reasons of ease
of construction, rather than control of load on the culvert;

] Six use the induced trench method but one reports problems with this method; and
° Seven use the modulus of soil reaction, E', as a measure of soil stiffness:

—  Two use the Howard table of E' with values from 0.35 MPa to 21 MPa (50
psi to 3,000 psi) depending on the soil type and compaction level); and

—  Five use one or two values of E', varying between 7.2 MPa and 11.7 MPa
(1,050 psi and 1,700 psi); however, three of these five are seeking better
methods of determining soil stiffness.

Backfill — All respondents use “granular” backfill, however, the definitions of
granular material vary. Materials that are allowed include large particle size, open graded
aggregates (AASHTO No. 3), and some with fines content up to 15 percent. Names include
select granular fill, granular backfill, gravel borrow, and select material. Some sponsors
have separate gradations for select and granular materials. Four sponsors allow installation
with fine-grained materials for some products or some situations. One sponsor allows select

material to have up to 60 percent silt content.

Other information related to backfill materials used by the questionnaire

respondents include:

° Three sponsors allow back{fill with native material under some conditions;
] Compaction requirements generally vary from 90 to 100 percent of AASHTO T-99;
] Eight of eleven respondents use controlled low strength materials (CLSM), also

called flowable fill, under some conditions;

16




° Some sponsors specify minimum trench widths as low as the outside diameter plus
150 mm (6 in.). Most sponsors specify maximum trench widths (generally O.D.
plus 0.9 m (3 ft)) or three times the outside diameter. Some distinguish between
flexible and rigid pipes and some have trench dimensions dependent on the

diameter;
o Ten of eleven require or recommend inspection during backfilling;
. Two of eleven require mandrel tests after backfill of flexible pipe;
° Eight of eleven require compaction testing; and
o Two of eleven have specifications concerning groundwater control.

The most common need, based on the respondents’ perception of current practice,
was a better method to determine E’. Other issues include need for improved flexible pipe

design procedures and better treatment of materials outside of the trench.

Of less overall importance but still desired by some respondents were:

. Refinement of the induced trench installation;

] Improved backfill procedures to achieve good support without developing excessive
lateral pressures;

] Specifications that allow use of lower quality materials; and

. Better quality joints.

2.1.2.2 AASHTO

AASHTO Standards have been written around three product types: corrugated
metal, concrete, and thermoplastic. The AASHTO standards for corrugated metal and
reinforced concrete were largely developed by industry trade organizations and then adopted
by AASHTO, while the standards for thermoplastic pipes were developed based on the
metal pipe standards, presumably on the assumption that thermoplastic and corrugated metal
pipes were both flexible conduits and behaved in the same fashion. The construction
specifications for AASHTO set forth the installation requirements; however, many
installation criteria are selected based on decisions made during the design process, thus,

both the design and installation practices must be examined.
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Corrugated Metal Pipe Design and Installation - AASHTO design methods for
corrugated metal pipe consider hoop compression stresses, for yield and buckling analysis,
and the flexibility coefficient, defined as:

R 2
FF = T (2.6)
where
FF = flexibility coefficient, m/kN, in./lb,
R = centroidal pipe radius, mm, in.,
E = pipe modulus of elasticity, MPa, psi, and
I = pipe wall moment of inertia, mm*/mm, in.%in..

The flexibility coefficient is a flexural stiffness criterion that is intended to assure
sufficient stiffness for the pipe to withstand handling and installation forces. The classical
formula for a ring under diametrally opposed line loads (the parallel plate test) is:

F EI

—_— 2.7
Ay  0.149R°
where
F = line load, kN/m, lb/in., and
Ay = change in vertical diameter, mm, in..
By rearranging it to the form:
2
RO _AYR _pp . 2.8)
El 0.149F

it can be seen that the flexibility factor is proportional to the percent deflection (Ay/R)
resulting from a unit line load (F), while the pipe stiffness (F/Ay) used to characterize
thermoplastic pipe is the absolute deflection resulting from a line load. Limiting values for

the flexibility coefficient have been set empirically based on experience.
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Of current AASHTO criteria for metal culvert design, only the buckling equation
considers soil stiffness. In the past, corrugated metal pipes were designed for deflection
using the Iowa formula and the modulus of soil reaction, E’. This calculation was dropped
from the specifications on the basis that if a pipe is properly installed it will not deflect

more than the allowable value.

Reinforced Concrete Pipe Design and Installation - Traditional beddings for
reinforced concrete pipes were noted above. These bedding conditions are associated with
“bedding factors™ that relate the load on the actual pipe to a load in a three-edge bearing
test that will produce the same bending moment at the pipe invert. The pipe is then
designed to resist the three-edge bearing load. This is called indirect design and is the
predominant method of concrete pipe design. Alternatively, pipes can be analyzed and
designed for the in-ground forces. This is direct design. It is used in some parts of the
United States and is the preferred method of design for special conditions such as high fills.

The SIDD installations were actually developed as a direct design method;
however, because of a long history of experience and confidence in indirect methods,
bedding factors were developed for these installations and have been incorporated into
AASHTO specifications. SIDD installations specify soil types in terms of AASHTO and
ASTM soil classifications and compaction in terms of a percent of maximum Proctor
density. Haunching effort is required for Installation Types 1 to 3. No special fill or
compaction is required above the springline, except as required for support of surface

pavement or other structures.

Thermoplastic Pipe Design and Installation - AASHTO developed a
thermoplastic pipe design procedure on the assumption that thermoplastic pipes were
flexible conduits and could be designed in the same manner as corrugated metal pipes.

Issues pertinent to thermoplastic pipe design include:

o Design for total tensile strain, which is not considered for metal pipe, is required
because not all thermoplastic pipes are ductile; and

° Design is currently based on the soil prism load, which is a common assumption

for flexible pipe; however, Hashash and Selig (1990) have shown that loads on
corrugated polyethylene pipes can be significantly less than the soil prism load.
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2.1.3 Other Installation Practice

Different industries and specific pipe manufacturers have taken different
approaches to the design of buried pipe installations. General practice of the corrugated
metal, concrete, and thermoplastic pipe industries was explored above. Other industry

practices of interest include:

Clay Pipe — Installation practice of the clay pipe industry is defined in ASTM C
12 Standard Practice for Installing Vitrified Clay Pipe. This standard focuses on support of
the invert and haunch zones, as do standards for concrete pipes. The standard proposes
beddings classified as B, C, D, crushed stone encasement, and controlled density fill (herein
this material will be called CLSM for Controlled Low Strength Material).

The B, C, and D beddings are very much like the traditional reinforced concrete
beddings, and use somewhat vague terminology such as “carefully placed material” and
select material. A bedding using crushed stone encasement, suggesting a backfill material
with angular particles, is shown to provide better support to a pipe with simply “gravel”
backfill, such as a GW soil. This is consistent with the Howard table of E’ values of soil
stiffness for flexible pipe. The standard is the only one for pipe installation that currently
provides a bedding detail for CLSM, as shown in Fig. 2.5. The detail shows the pipe laid
on crushed stone bedding. This is a relatively simple installation from the point of labor,
but allows the invert to have a potentially harder support point than the haunches which is
undesirable. If the pipe is backfilled prior to the CLSM curing than the pipe could
develop a line load at the invert and become overstressed. The standard also calls for a
CLSM 28 day compressive strength of 700 to 2100 kPa (100 to 300 psi). This is high if
the CLSM is to be considered excavatable. See Section 2.2.4 for additional discussion of
CLSM.
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material (Note 3) » r @

Load Factor: 2.8

Figure 2.5 Bedding Detail for Clay Pipe with CLSM Backfill (ASTM C 12)

Fiberglass Pipe — Glass fiber reinforced plastic pipe, historically called GRP or
FRP but now called simply fiberglass pipe in the United States, can be customized by
changing the relative quantity of glass, resin, and, in some cases, sand filler. This allows
the industry to produce a wide range of pipe stiffness which in turn allows a broader
approach to installation, allowing several trench configurations and backfill conditions. This
is documented in part in AWWA Manual M45 (AWWA 1996). One manufacturer’s
suggested installation details based on pipe stiffness and depth of fill are shown in table 2.4
and fig. 2.6. Fiberglass pipe is more strain sensitive than thermoplastic pipe, thus, more
effort has been invested in the prediction of strains in this type of pipe and the design
methods are more thorough than is traditionally the case for thermoplastic pipes. The
design and installation procedures should be of interest to culvert designers, even if not
specifically using fiberglass pipe.
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2 Gravel is defined in section 13, Paragraph A3.

3 Sand is defined in section 13, paragraph A3.

“ RD is relative density per ASTM D4253,

3 SPD is standard proctor density per ASTM D698.

Figure 2.6 Trench Cross-Sections for Hobas Fiberglass Pipe
2.2 Classification and Characterization of Backfill Soils

Backfill materials are usually characterized in terms of gradation and density, and,
in the case of fine-grained materials, Atterberg limits. The results of these standard tests are
used to estimate a number of mechanical properties used in design. The most important
property needed in the design of buried culverts is the soil stiffness; however, it is rare for
specifications to require tests specifically for soil stiffness. Engineers often rely on simple
empirical relations, such as gradation and density, to establish the soil stiffness. In the
field, the importance of the soil stiffness often gets lost in the concern to meet a
specification construction requirement for density or gradation. This section reviews
standard practices for characterizing soils used as pipe backfill.

2.2.1 Classification Systems

The first step in engineering with soils is typically to characterize the material
based on grain size and Atterberg limits (AASHTO M 145, T 88, T 89, and T 90, and the
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corresponding ASTM D 422, D 2487, D 2488, and D 4318). These tests and classification
systems delineate some of the most basic differences among soil types, i.e., particle size and
plasticity.

While the AASHTO and ASTM tests listed above for determining grain size and
Atterberg limits are equivalent, the soil classification systems based on those test results are
not. The AASHTO soil classification system (M 145) was developed for soils to be used as
subgrades in road construction, while the ASTM system (D 2487, also called the Unified
Soil Classification System or USCS) was de\}eloped for broader engineering purposes. Both
systems rely on the percentage of material passing a No. 200 sieve (0.075 mm particle size)
as the delineation between coarse-grained soils and fine-grained soils; however, each system
considers a different percentages as critical. Behavior of coarse-grained soils is best
described by particle size while behavior of fine-grained soils is best described by the liquid
limit and plasticity index. The quantity of material passing the No. 200 sieve is called the
percent fines.

The AASHTO classification system is shown in table 2.5. A soil is classified by
using the table from left to right. The first group from the left to fit the soil is the correct
AASHTO classification. In addition, the AASHTO system uses a group index based on the
plasticity index and liquid limit. The group index is not often used in specifying pipe
backfills and is not discussed further here. The AASHTO system classifies any soil with
more than 35-percent fines a silt-clay material and any soil with less than 35-percent fines a

granular material.

The ASTM classification system is shown in tables 2.6 and 2.7 for coarse and fine
grained soils, respectively. A given soil is classified based on the grain size distribution,
plasticity index, and liquid limit. The ASTM system classifies any soil with more than 50-
percent fines as a fine-grained soil and any soil with less than 50-percent fines as a coarse-
grained soil. Coarse-grained soils are characterized based on the coefficient of uniformity,
C,. and the coefficient of curvature, C . These coefficients are used to determine if a soil is
uniformly or gap graded. Backfill soils are often specified in terms of the two letter group

“symbol (e.g., SW), however, much more information is available if the group name is used.
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As noted above, a principal criterion for classification of soils is the quantity of
fines. Fig. 2.7 compares the AASHTO and ASTM classification systems with the
previously discussed soil groups made for structural purposes as assigned by Howard and
SIDD based on the fines content. Observations based on this figure include:

° In the ASTM system, fines content is definitive as a first step in classification, i.e.,
a given soil with certain percentage of fines can only be classified into certain
groups. The system uses fines content of 5, 12, and 50 percent as the principle
limits; additional limits are available if the group names are used.

° The AASHTO system allows soils with limited fines to fall into one of several
classifications as a function of other criteria, and depends on using table 2.5 from
left to right to make the necessary distinctions.

° The Howard soil groups correspond closely to ASTM, except that an additional
dividing point based on soils with more or less than 30 percent coarse-grained
material is introduced, and the aforementioned grouping based on angularity.

° The SIDD soil groups use fines to distinguish between the SW group and both the
ML and CL groups; however, for soils with more than 20 percent fines, Atterberg
limits are used to distinguish among soils in the ML and CL groups.

. The SIDD soil groups do not specifically call out to which group soils with 5 to 12
percent fines should be assigned.

. The SIDD system puts all A-2 soils into the ML group. The A-2 soil classification
group is very broad. It would be more consistent with assignment of ASTM soils
if the A-2-6 and A-2-7 soils are reclassified in the CL group.

Review of the data on which the SIDD soil groupings were developed (Selig, 1988)
shows that the soil used as the model for the “ML” classification had more than 30 percent
coarse-grained material and that the soil used as the model for the “CL” soil classification
had less than 30 percent coarse-grained material. This means that they would also fall into
separate classification groups according to the E’ soil table. The two systems should be
reviewed to see if the criteria of silt versus clay, as used in SIDD, or the 30 percent coarse-

grained material criteria used for E’ is more appropriate as a backfill classification system.

Fig. 2.8 compares the AASHTO and ASTM systems based on plasticity as
determined by the Atterberg limits. The figure shows that, while there are differences in
details, the two systems generally have similar boundaries to distinguish between different
types of behavior.
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CL includes A-5, A6, CL, MH, GC, SC
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E' = 1000 includes CL, ML with more than 30 % coarse particles, and GM, GC, SM, SC
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Figure 2.7 Soil Classifications Based on Fines Content Compared to Howard Soil
Stiffnesses and SIDD Soil Types
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2.2.2 Compaction and Compactibility

Soils that are to be placed and compacted as part of engineered fills, such as pipe
backfill, are also tested for moisture-density relationships due to compaction energy
(AASHTO T 99 and T 180, and the equivalent ASTM D 698 and D 1557, called the
standard and modified Proctor tests, respectively, herein). The density achieved during
compaction of some coarse-grained soils with limited fines content (less than about 5
percent) is insensitive to moisture content. These soils are characterized using the relative
density tests (ASTM D 4253 and D 4254).

A soil that achieves good stiffness characteristics with minimal compactive effort is
said to be readily compactible. This generally applies to coarse grained materials such as
A-1, A-2 and A-3 in the AASHTO system and GW, GP, SW, and SP in the USCS system.
As grain size decreases and fines content increases the compactive effort required to achieve
adequate stiffness increases and the maximum stiffness that can be achieved with
compaction decreases. Selig (1988) demonstrated this in tests where the compactive effort
was varied from 0 to 100 percent of the energy required by the standard Proctor test.
McGrath (1990) developed this concept further to demonstrate the energy required to
achieve a given level of soil stiffness (E’) with various types of soil. Achieving an E’ of
1000 psi with CL soil requires more than seven times the compactive energy of achieving
the same E’ with SW soil. This subject is explored more thoroughly in chapter 3.

2.2.3  Stiffness and Strength

Methods of modeling soil behavior for design of buried pipe vary from very
simple procedures that assume linear, elastic soil behavior and do not consider strength, to
very sophisticated models that consider true non-linear, stress-dependent soil behavior and

strength parameters.

An example of a simple soil model is the above mentioned table of values for the
modulus of soil reaction, E’ (table 2.8), developed by Howard (1977) for use with the Iowa
formula (Spangler, 1941). Howard’s table divides soils into four principal groups and
assigns values of E’ as a function of the soil group and the density, which is expressed as
function of the maximum density determined in a reference test, such as AASHTO T 99.
The table makes a distinction, not made in the ASTM or AASHTO classification systems,




Table 2.8

Howard Design Values for Modulus of Seil Reaction, E’ (Howard, 1977)

Soil type-pipe bedding material
(Unified Classification System)’

E’ for degree of compaction of bedding (Ib/in.%)

Dumped Slight Moderate High
<85% Proctor | 85-95% Proctor | >95% Proctor
<40% relative | 40-70% relative | >70% relative

density density density

Fine-grained soils (LL>50)
Soils with medium to high
plasticity
CH, MH, CH-MH

No data available; consult a competent soils engineer;
otherwise use E’=0

Fine-grained soils (LL<50)
Soils with medium to no
plasticity, CL, ML, ML-CL,
with less than 25%
coarse-grained particles

50

200

400

1000

Fine-grained soils LL<50)
Soils with medium to no
plasticity, CL, ML, ML-CL,
with more than 25%
coarse-grained particles

Coarse-grained soils with fines
GM, GC, SM, SC? contains
more than 12% fines

100

400

1000

2000

Coarse-grained soils with little
or no fines
GW, GP, SW, SP? contains
less than 12% fines

200

1000

2000

3000

Crushed Rock

1000

3000

Accuracy in terms of
percent deflection®

+2%

+2%

+ 1

= 0.5%

! ASTM Designation D 2487, USBR Designation E-3.

2 LL = liquid limit.

3 Or any borderline soil beginning with one of these symbols (i.e., GM-GC, GC-SC).
* For £ 1% accuracy and predicted deflection of 3%, actual deflection would be between 2% and 4%.

Note: A.

B.
C.
D

E.

Values applicable only for fills less than 50 ft.

Table does not include any safety factor.

For use in predicting initial deflections only, appropriate deflection lag factor must be
applied for long-term deflections.

If bedding falls on the borderline between two compaction categories, select lower E’
value or average the two values.

Percent Proctor based on laboratory maximum dry density from test standards using

about 12,500 ft-1b/ft® (ASTM D-698, AASHTO T-99, USBR Designation E-11).

1 MPa = 145 psi, 1 kN-m/m> = 20.9 ft-1b/ft>
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between “crushed rock™ and other granular soils. This table is widely cited in the literature.
Other variations of this table have been proposed. The Water Research Centre (WRc) in the
United Kingdom published table 2.9 (DeRosa et al., 1988). This is similar to the Howard
table but distinguishes uniform gravel from single size gravel. The single size gravel is
seen to have a higher initial stiffness prior to compaction while the graded gravel is able to
achieve a higher stiffness after compaction.

Table 2.9
Water Research Centre Values for Modulus of Soil Reaction (DeRosa.et al., 1988)

EMBEDMENT MATERIAL MODULUS OF SOIL REACTION
(MN/m?)
- < 9 o
DESCRIPTION CASAGRANDE |UNCOM- |80% | 85% | 90% | 95%

GROUP SYMBOL {PACTED| Mp | Mp | Mp | Mp

Gravel ~ single size GuU
Gravel ~ graded GwW
Sand and coarse grained soil GP
with less than 12% fines Sw

SP
Coarse grained soil with GM
more than 12% fines GC

SM
Fine grained soil CL. ML,
(LL <350% ) with medium 10 mixtures
no plasticity aad containing ML/CL and
more than 25% coarse MUMH

grained particies

Fine grained soil CL.ML.

(LL <50%) with medium to mixtures - - 1 3 7
no plasticity and containing ML/CL, CLUCH

less than 25% coarse and MUMH

grained particies

All values valid for semi-rigid pipe design.
Duta applics to cover depths in the range 3.9 to 10.0m.

:] Range of E’ values recommended for flexible pipe design.

Note: 1 MN/m? = 145 psi
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An example of a sophisticated soil model for use in buried pipe design is the
hyperbolic model (Duncan et al., 1980), which is used in most finite element models for
analysis of buried pipe. The hyperbolic model uses nine separate parameters to completely
define the stress-strain behavior of soil, including both strength and stiffness parameters.
The Duncan model used a power law rule to model the bulk modulus which represents the
volumetric behavior of soil. Selig (1988) found a hyperbolic model for the bulk modulus
could more accurately represent the volumetric behavior and presented a set of parameters
that were used to develop the soil groupings for the SIDD installations. Selig (1990) later
proposed an alternative set of properties for the hyperbolic bulk modulus model that he
recommended for use with flexible pipe.

2.2.4  Controlled Low Strength Material

Controlled Low Strength Material, or CLSM, also known as flowable fill, is a
special material manufactured to have good flow characteristics. Typical mix designs use
cement sand, fly ash, and water; however, the cement content is on the order of 30 to 60
kg/m> (50 to 100 lbs/yd®), extremely low relative to structural concrete mixes. The fly ash
is the key ingredient to create the good flow characteristics. An alternative to fly ash is to
use high quantities of air. Twenty to thirty percent air content, with reduced or no fly ash,
has also been found to produce mixes with good flow characteristics (Grace, 1996).
Applications of CLSM have been discussed by Howard (1996) and Brewer (1993).

CLSM gains strength and stiffness over time. McGrath and Hoopes (1997)
published recommended hyperbolic soil model properties and design values of bedding
factors and E’ values at ages of 16 hours, 7 days, and 28 days for CLSM mixes with high
air contents. The values were based on triaxial and one-dimensional compression testing,
and finite element analysis. The mix designs used in that study are presented in table 2.10.
The proposed soil properties are presented in tables 2.11, 2.12, and 2.13.




Table 2.10

CLSM Test Program Variables (McGrath and Hoopes, 1997)

Parameter Conditions ‘

CLSM Mix 1 cement: 59 kg/m>, Type 1; sand: 1480 kg/m 3
air: 25-30%

CLSM Mix 2 cement: 30 kg/m®, Type 1; fly ash: 150 kg/m®;
sand: 1480 kg/m”; air: 27%

Age at test 16 hours, 7 days, 28 days

Triaxial confining stress | 20, 40, and 60 kPa (3, 6, and 9 psi)

Table 2.11

Hyperbolic Soil Model Parameters for Air-Modified CLSM

(McGrath and Hoopes, 1997)

Parameter Symbol Value
16 hours 7 days 28 days
K 630 800 1000
n 0.8 0.75 0.65
R, 0.86 0.6 0.55
C, kPa (psi) 0 28 (4) 42 (6)
¢, deg 38 38 38
A, deg.(Note 1) 0 0 0
B,/Pa 19 40 450
€, 0.17 0.15 0.09

Notes

1. The term A accounts for the non-linear Mohr-Coulomb failure
envelope observed in many soils. The scope of the testing program
was not sufficient to determine the shape of the envelope for CLSM,
thus it is assumed to be linear by setting Ap=0.




Table 2.12

Rigid Pipe Bedding Factors for Air-Modified CLSM
(McGrath and Hoopes, 1997)

Age Installation Type
Trench Embank.
16 hours 1.8 2.5t 2.8
7 days 2 3.0to 3.4
28 days 2.5 4.0 to 4.8
Table 2.13

Modulus of Soil Reaction Values for CLSM, MPa (psi)

Mix Age
16 hours 7 days 28 days
Air-modified CLSM 7 (1,000) 14 (2,000) | 21 (3,000)

23 Influence, Properties, and Modeling of Pre-existing Soil

For pipes installed in trenches, the stiffness and strength properties of the in situ
soils that form the trench bottom and trench wall can influence the pipe behavior.
Characterizing these materials has posed a significant problem for designers, as the
variability of in situ soils is immense. In addition to the variability in particle size and
plasticity described by the soil classification systems, natural soils have highly variable
moisture contents, tend to change stiffness with age, and may range in stiffness from wet
runny conditions to solid rock. Unlike backfill soils, which can be selected for a project,
the designer must accept the natural soils as a part of the design. From a structural point of
view, it is often desirable to use wide trenches to isolate a pipe from poor natural soils;
however, the increase in excavation and backfill costs can be significant and the question of

how wide a trench must be is important.
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AWWA Manual M45, The Fiberglass Pipe Design Manual (1996) has attempted to
provide guidance on soil stiffness for in situ soils based on the unconfined compressive
strength and the standard penetration test (commonly called blow counts). Table 2.14
provides suggested modulus values ranging from 350 kPa to 138 MPa (50 to 20,000 psi).

Table 2.14
AWWA Manual M45 Values for Modulus of Soil Reaction of In Situ Soils

Native in Situ Soils*

Granular _ Cohesive E’, (psi)
Blows/ft * Description q.(Tons/sf) Description
>0-1 very, very loose >0-0.125 very, very soft 50
1-2 very loose 0.125-0.25 very soft 200
2-4 0.25-0.50 soft 700
4-8 loose 0.50-1.0 medium 1,500
8-15 slightly compact 1.0-2.0 stiff 3,000
15-30 compact 2.0-4.0 very stiff 5,000
30-50 dense 4.0-6.0 hard 10,000
>50 very dense >6.0 very hard 20,000

* The modulus of soil reaction E’, for rock is = 50,000 psi.
* Standard penetration test per ASTM D1586.

For embankment installation E’, = E’, = E’
Note: 1 m = 3.28 ft, 1 kN/m? = 0.010 tons/sq. ft, 1 MPa = 145 psi

Evaluating in situ soils in simplified design methods generally requires that the soil
stiffness at the side of a pipe be represented by a single modulus value, which is a result of
the composite behavior of the trench backfill and the natural soil. Very little work has been
done on this issue. Leonhardt (1979) used the layered elastic theory to develop a simplified
method to compute an “effective” E’ value based on the relative value of the stiffness of the
in situ and backfill soils and the trench width, expressed as a ratio of the width to the
outside diameter of the pipe. The expression is:
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E‘design = CE.b ? (29)

where
E’ jesign = value of E’ used in Iowa formula, MPa, psi,
¢ = Leonhardt factor, and
Ey = value of E’ for backfill.

The Leonhardt factor is computed as:

Bd
1.662 +0.639| —2 -1
D

¢ = ° , (2.10)
B B E'
[—d —1] + [1.662 +0.361[-—f‘- —1] —t
DO DO E'n
where
By = trench width, m, ft,
D, = pipe outside diameter, m, ft, and
E’. =  value of E’ for in situ material.

The Leonhardt approach is thought to be conservative. AWWA Manual M45

presents a table of slightly less conservative values.

In computer analyses, in situ soils are often treated as exhibiting linear elastic
behavior. This usually produces acceptable accuracy, because the imposed stresses are often
not greater than the previous maximum stress experienced by the soil mass and because the
in situ soil is separated from the pipe by the trench backfill and therefore has less impact on
the behavior. Designers should be aware of instances where these two conditions do not

exist and may wish to investigate more sophisticated assumptions.
2.4 A Pipe-Soil Interaction Software

A number of finite element method (FEM) computer programs have been written
specifically for the analysis of buried pipe problems, among these are CANDE (Katona,
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1976, and Musser et al. 1989), and SPIDA (Heger et al. 1985). These programs are
considered representative of the types of features that are available in other programs.

CANDE was developed under contract from the Federal Highway Administration.
It was originally written for main frame computers but has since been modified to run on
personal computers (Musser et al. 1989). It considers all types of pipe materials, including
both rigid and flexible pipes. Several elastic soil models are available, including linear
elastic, overburden dependent, and hyperbolic. CANDE has three solution levels. Level 1
does not utilize finite elements. It is an implementation of the elastic plate solution
developed by Burns and Richard (1964). Level 2 is a finite element solution with a
predefined mesh. The automated mesh assumes symmetry about the centerline of the pipe
and models only half of the structure using ten bending elements, each 15 degrees long.

Level 3 is a fully user defined finite element solution. CANDE is publicly available.

The Burns and Richard solution has received a great deal of attention as a
simplified design method that is based on a theoretically sound development and can
address the entire range of pipe stiffnesses. It is a closed form solution for an elastic
circular ring embedded in an infinite homogenous, elastic, isotropic medium. The theory

describes the pipe in terms of the hoop (axial) stiffness:

Ps, = =2 @2.11)
R
where
PSy = Pipe hoop stiffness, MN/m?, psi,
E = Pipe material modulus of elasticity, MPa, psi,
A = Pipe wall area per unit length, mm?/mm, in.*/in., and
R = Centroidal radius of pipe, mm, in.

and the pipe bending stiffness, which is defined here in terms of standard U.S. practice as
the stiffness in the parallel plate test:

PS, = — (2.12)

0.149R 3
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where

PSg Pipe bending stiffness, MN/m/m, Ibs/in./in., and

I = Moment of inertia of pipe wall, mm*/mm, in.in..

The pipe stiffness are combined with the soil stiffness, using the constrained
modulus, M, to define the overall pipe-soil system stiffnesses, which are the hoop stiffness

parameter, Sy:

S, = —, 2.13
" EA (@13
and the bending stiffness parameter, Sg:
g = MR 3 (2.14)
B —— .

These parameters are very useful in understanding behavior, as will be discussed in

later sections.

SPIDA was developed jointly by Simpson Gumpertz & Heger Inc. and the
University of Massachusetts under contract from the American Concrete Pipe Association.
It assumes symmetry about the centerline of the pipe using 17 bending elements varying in
arc length from 7.5 degrees near the crown and invert, to 10 degrees near the springline, to
15 degrees at 45 degrees from the crown and invert. SPIDA uses an automatic mesh
generator that can define trench and embankment installations. For installations that fall
within the limits of the mesh generator it is easier to use than CANDE, but it does not have
an option with the versatility of CANDE Level 3. The soil options in SPIDA are linear
elastic and hyperbolic. SPIDA is a proprietary program, owned by the ACPA.

CANDE and SPIDA both allow modeling soil behavior using the Duncan
hyperbolic Young’s modulus soil model with the Selig hyperbolic bulk modulus. This is an
elastic model that incorporates non-linear behavior as a function of the soil strength
parameters. Properties for use in this model have been developed from tests on previously
compacted soil. It is an elastic model.
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CHAPTER 3
CHARACTERIZATION OF BACKFILL MATERIALS

Current practice in characterizing backfill materials focuses on soil classification
and compaction characteristics. This was discussed in chapter 2 but, also noted, was the
fact that the properties of interest for pipe backfill are stiffness and strength. A program of
characterizing backfill materials by both the classical tests and other tests that may be more
revealing about stiffness and strength properties was undertaken to explore changes to
practice that might allow a more direct correlation between the measured properties and the
desired properties.

A second effort in correlating backfill properties is to relate the more sophisticated
soil models used in finite element analysis of buried pipe to the simplified properties used
in hand calculations. The hyperbolic models of Duncan (1980) and Selig (1988) are
complicated and require significant testing to develop the data necessary to characterize a
soil, while the modulus of soil resistance values of Howard (1977) are readily determined
and applied but empirical in nature and have not been successfully correlated to true soil
properties. The relationship between the modulus of soil reaction and the hyperbolic soil

model is explored.
3.1 Materials Tested

A total of 12 processed backfill materials and naturally occurring soils were
collected for testing (for simplicity they will all be called “soils” below). The soil
gradations, classifications and common names by which they are sold are listed in Table 3.1.

They are described as follows:

] Soils 1 to 3 are angular crushed stone with widely varying gradations. All three
soils were crushed from the same material, a local deposit called trap rock with a
specific gravity of 2.9.

] Soil 4 is a uniform rounded stone.

® Soils 5 and 8 are rounded and subrounded sands. Soil 5 is manufactured as fine
concrete aggregate and Soil 8 for use on roads in winter.
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CBR is not a good indicator of unit weight for these soils in the range of 90 to 100 percent

of maximum standard Proctor density.

Moisture-density relations and moisture-penetration resistance relations for Soil Nos.
6 and 8 to 12 are shown in figs. 3.6 and 3.7. Fig. 3.7 suggests that a relationship exists
between moisture content and penetration resistance, and also between density and
penetration resistance for the soils with more than 7 percent fines (Nos. 6, 9, 10, and 12).
The penetration resistance varies almost 100 percent as the density varies between 90 and
100 percent of maximum standard Proctor density. The results for the two sands without
fines (Nos. 8 and 11) show no correlation.

Together, figs. 3.4 to 3.7 indicate that relationships between penetration resistance (or
CBR) could be established for soils with more than a few percent fines; however, the data
in fig. 3.7 also show a strong relationship to moisture content, which may be the dominant

variable.

Normalized results of the variable compactive effort tests are shown for individual
soils in fig. 3.8 and for all data in fig. 3.9. Where the moisture content does not vary, a
relation between CBR and density is present, as both parameters show an increase for
compaction energy up to 100 percent of standard Proctor effort. Only Soil No. 5 shows a
clear trend of continued increase in density as the compactive energy further increases from
the standard effort to the modified effort; however, the data shows scatter. None of the
soils show an increase in CBR over the range of standard to modified range of compactive
energy. This lack of increase for compactive energies greater than the standard effort could
have been anticipated as all of the tests were conducted at optimum moisture content
determined from the standard test. Had the test been conducted at a lower moisture content

a trend of increasing density and CBR value may have been evident over this range.
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3.2 Characterization Tests

The tests for characterizing backfill materials included the traditional compaction
tests as well as a number of tests that are not typically considered for pipe installation.
' These include the moisture-density relations using standard Proctor effort, California
Bearing Ratio test, compaction tests conducted with variable effort, one-dimensional
compression tests, and penetration tests. The CLSM material was tested for unconfined

compression strength.
3.2.1 Compaction Characterization

Compaction characteristics of the test soils were determined in accordance with the
standard Proctor test (AASHTO T 99, ASTM D 698). The Proctor tests were all conducted
in 150 mm (6 in.) diameter molds suitable for conducting CBR tests (see section 3.3) after
compaction. New soil was used for each test. Soils 1 to 6 were also characterized by
relative density tests (ASTM D 4253 and D 4254). The maximum index density test was
conducted on a cam driven vertically vibrating table using dry soil (Method 2A).

3.2.2  Variable Compactive Effort

After determination of maximum dry density and optimum water contents,
compaction tests using variable levels of effort were conducted to determine the relationship
of dry density to compactive effort. These tests were conducted on Soil Nos. 1 to 6. New
soil was used for each test. All tests were conducted at near optimum water content as
determined from the standard effort test and in 150 mm (6 in.) diameter molds with a mold
volume of 0.0021 m> (0.075 ft®). Compactive energy varied from none to the modified test
energy, 2,700 kN-m/m?> (56,000 ft-1b/ft°), as summarized in table 3.3. CBR tests were

conducted after completion of the compaction tests (See section 3.2.3).
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Table 3.3
Parameters for Variable Compactive Effort Tests

Energy level Weight Height | Blows | Layers Energy
of drop per
N) (m) layer (KN-m/m>)
Loose 0 0 0 1 0
0.25 * Std Proctor 24.5 0.305 14 3 150
0.50 * Std Proctor 245 0.305 28 3 300
0.75 * Std Proctor 24.5 0.305 42 3 440
1.00 * Std Proctor 245 0.305 56 3 590
2.19 * Std Proctor 44.8 0.457 27 5 1300
3.38 * Std Proctor 44.8 0.457 42 5 2000
4.58 * Std Proctor 44.8 0.457 56 S 2700
(Mod. Proctor)

3.2.3 California Bearing Ratio

Soils 1 to 6 were tested by the California Bearing Ratio (CBR) test, AASHTO T 193
(ASTM D 1883). The test was conducted on specimens as compacted, without soaking, and
with a 76.5 N (17.2 1b) surcharge (0.6 psi). The CBR was computed for a penetration depth
of 5 mm (0.2 in.).

3.2.4 Penetration Tests

Soil Nos. 6 and 8 to 12 were also tested for penetration resistance in accordance
with ASTM D 1558. The size of the penetrometer tip varied as a function of the density
and soil type. The penetration force was read at a penetration depth of 50 mm (2 in.). The
penetration test is similar to the CBR, except that the load is applied to a smaller bearing

area with less control and there is no confining surcharge.
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3.2.5 Results of Characterization Tests

Results of the standard Proctor compaction tests are given in table 3.4. The values
are reported as unit weights (kN/m>) rather than density (kg/m?) to simplify calculation of
loads and stress which are computed as force per unit length (kN/m) and force per unit area
(kN/m?), respectively. Table 3.4 also presents the results of the relative density tests in
terms of the percentage of maximum standard Proctor density that was achieved and the
loose density when soil was placed in the Proctor mold at optimum moisture content with
no compaction. The data for Soils 1 to 6 is presented graphically in Fig. 3.3. This figure
shows that the soils with less than 1 percent fines, whether dry or wet, are at 80 percent or
more of maximum standard Proctor density when placed loose with no compactive effort.
For the pea gravel in particular, which is uniformly graded and rounded, the soil is at 85 to
90 percent density when loosely placed. As the fines content increases, the loose density
decreases. This demonstrates that, as the fines content increases, the loose density decreases
which in turn increases the importance of applying proper compactive effort. Note also that
the minimum relative density is not necessarily a lower bound for loosely placed soils.
When moisture is added the soil can bulk, resulting in a lower density. In the case of Soil
6, the bulking is substantial, resulting in a loose density of about 55 percent of maximum

standard Proctor density.
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Table 3.4
Comparison of Relative Density and Standard Proctor Test Results

AASHTO T 99 Maximum | Minimum Placed
relative relative loose at
Soil Common max. unit | Optimum density density opti'mum
No. name weight, moisture moisture
kN/m? (%) % of maximum standard Proctor
(Ib/ft) density _
1 gravel trap 16.6 2 97 81 83
rock (106)
2 | sand trap 20.3(129) 12 96 75 58
rock
3 | shoulder 22.0(140) 9 94 70 71
stone
4 | pea gravel 16.9(108) 1 97 85 91
5 | concrete 17.9(114) 10 107 86 70
sand
6 rewash 15.0(96) 22 104 76 54
20
7 | glacial till
8 | winter sand 17.6(112) 10
9 | top clay 17.1(109) 20
10 | varved clay 15.9(101) 22
11 | red 19.0(121) 12
sandstone
12 | native sand 19.8(126) 9
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Figure 3.3 Loose and Compacted Density of Backfill Soils

Moisture-density and moisture-CBR relations for Soil Nos. 1 to 6 are presented in
fig. 3.4. Soil No. 6, with 30 percent fines, shows the classical moisture-density relation,
while the other soils, with few fines, have a much less distinct, or no relationship between
moisture content and unit weight (fig. 3.4b). The CBRs show a trend of increasing at a
modest rate until the moisture content nears optimum and then dropping rapidly (fig 3.4a).
Fig. 3.5 shows the same data but with the CBR on the x-axis, and all parameters normalized

based on the value at 100 percent standard Proctor unit weight. The figure suggests that the
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CBR is not a good indicator of unit weight for these soils in the range of 90 to 100 percent

of maximum standard Proctor density.

Moisture-density relations and moisture-penetration resistance relations for Soil Nos.
6 and 8 to 12 are shown in figs. 3.6 and 3.7. Fig. 3.7 suggests that a relationship exists
between moisture content and penetration resistance, and also between density and
penetration resistance for the soils with more than 7 percent fines (Nos. 6, 9, 10, and 12).
The penetration resistance varies almost 100 percent as the density varies between 90 and
100 percent of maximum standard Proctor density. The results for the two sands without
fines (Nos. 8 and 11) show no correlation.

Together, figs. 3.4 to 3.7 indicate that relationships between penetration resistance (or
CBR) could be established for soils with more than a few percent fines; however, the data
in fig. 3.7 also show a strong relationship to moisture content, which may be the dominant

variable.

Normalized results of the variable compactive effort tests are shown for individual
soils in fig. 3.8 and for all data in fig. 3.9. Where the moisture content does not vary, a
relation between CBR and density is present, as both parameters show an increase for
compaction energy up to 100 percent of standard Proctor effort. Only Soil No. 5 shows a
clear trend of continued increase in density as the compactive energy further increases from
the standard effort to the modified effort; however, the data shows scatter. None of the
soils show an increase in CBR over the range of standard to modified range of compactive
energy. This lack of increase for compactive energies greater than the standard effort could
have been anticipated as all of the tests were conducted at optimum moisture content
determined from the standard test. Had the test been conducted at a lower moisture content

a trend of increasing density and CBR value may have been evident over this range.
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3.3  One-Dimensional Compression Tests

The variability of backfill materials and the lack of quality control on construction
projects ‘generally leads designers to accepting “standard” properties for soils, such as the
hyperbolic properties of Duncan(1980) and Selig (1988, 1990) used in finite element
analyses and the modulus of soil reaction values developed by Howard (1977). For some
projects, however, it is desirable to conduct tests on actual backfill materials to determine
the properties. The triaxial compression test.is considered the most effective test to
determine stiffness properties of soils; however, equipment for this test is not readily
available to many pipe designers and the testing is relatively complex and time consuming.
A relatively simple alternate to the triaxial test is the one-dimensional compression test
which consists of compressing soil in a rigid mold that allows no lateral strain. This is

essentially the oedometer test used for determining consolidation characteristics of clays.

The one-dimensional compression test is not typically used for coarse-grained soils
because the standard mold is small relative to the particle sizes, because of edge effects at
the soil-mold interface, and because of difficulty in leveling the sample surface and getting
uniform contact with the loading plates. Even though these problems are known to exist,
several of the backfill soils were evaluated with the one-dimensional compression test
(Courtney, 1995, and Ramsay, 1994) and the results demonstrate important characteristics of
backfill behavior.

3.3.1 Procedures

The test apparatus is shown in fig. 3.10. Tests were conducted in a 155 mm (6.11
in.) diameter mold with a height of 50.8 mm, (2 in.). All specimens were prepared at the
optimum moisture content determined from the results of the standard Proctor test. Two

methods of compaction of the compression test specimens were evaluated:

] Clay samples were compacted by static compression. This was accomplished in
layers. The first layer of soil was placed in the mold and subjected to a static
compression force in the compression testing machine until it reached the desired
density. This was then repeated for the second layer of the specimen.
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Figure 3.10 Configuration of One-Dimensional Compression Test

o Coarse-grained soils were compacted by vibration. The full test amount of soil was
placed in the test mold which was then secured to a vibrating table. The specimen
was then vibrated at 60 hertz until the sample reached the desired density.

After preparation, samples were tested in a 53.3 kN (12,000 1b) capacity Tinius
Olsen screw-drive compression machine. Load and strain were recorded at closely spaced
intervals using an Artech 44.5 kN, (10,000 1b) load cell and a Hewlett Packard LVDT with
a computerized data acquisition system. A test consisted of three load-unload cycles over a

compression stress range from 0 to 1,000 kPa (0 to 145 psi).

Tests were conducted on the shoulder stone, rewash, winter sand, and top clay at

several densities.

59




3.3.2 Results

All data was plotted by considering any load up to a stress level of 7 kPa (1 psi) as a
seating effect. The stress and strain at this point on the raw data curves was subtracted
from the remaining data prior to plotting. Stress-strain curves at a density of about 90
percent of maximum dry density are presented for each of the four soils tested in fig. 3.11,
which shows the following:

° As the particle size decreases the total strain at 1,000 kPa (150 psi) increases. This
demonstrates the relative stiffness of the soils.

o The high stiffness of the shoulder stone relative to the other soils is demonstrated by
the high slope of the initial portion of the curve in the first load cycle.

o The slope of the curves for all three cycles of the coarse-grained soils are much
higher than for the corresponding cycles of the clay. This also suggests the better
performance of the coarse-grained materials.

L The stress-strain curve for the clay material shows a decrease in slope at about 4
percent strain. This “wave” is thought to be the result of the compaction method.

The stress-strain curves of the four soils in the lower stress region where pipes are
typically installed are shown in fig. 3.12. This figure clearly shows the greater stiffness of
the shoulder stone. The performance of the clay is much better than expected, showing a
stress-strain curve similar to that of the winter sand and rewash. This is thought to be an
effect of the differences in the compaction methods. The clay had been compacted using
static compression, while the coarse grained soils were compacted using vibration. Thus,
the stress-strain behavior of the sand represents a first load cycle while the clay is already
on a second load cycle. The decrease in slope for the clay stress-strain curve at a strain

level of about 3 percent supports this explanation.
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Figﬁre 3.12 Stress-Strain Curves at Typical Stress Ranges, 90 Percent Density

Table 3.5 shows the secant constrained modulus, computed as the slope of the secant
from the origin of the stress-strain curve to the “applied stress” level shown in the left hand
column of the table. Modulus values are presented for several densities for each material.
These values demonstrate the expected trends with changing density; however, the moduli are
substantially lower than expected based on the predicted values from standardized soil
properties, such as those used to develop the SIDD designs for reinforced concrete pipe,
particularly those for the shoulder stone and winter sand. This will be discussed further in

section 3.5.
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Table 3.5
Constrained Modulus Values (MPa) from One-Dimensional Compression Tests

Applied Shoulder stone
stress Compaction level (% of maximum standard Proctor)
(kPa) 97% 90% 84% 75%
7 7.3 5.6 3.3 1.9
14 7.9 6.3 3.7 1.9
34 93 8.2 49 2.1
69 10.3 10.5 6.6 2.5
138 12.6 13.8 9.3 3.1
276 16.0 18.9 12.9 4.1
413 18.7 21.7 14.9 5.0
689 233 26.6 18.7 6.4
1034 27.6 31.3 22.6 7.9
Applied Winter sand
stress Compaction level (% of maximum standard Proctor)
(kPa) 94% 91% 89% 85% 63%
7 3.2 1.1 0.8 2.5 0.05
14 3.8 1.7 0.9 3.1 0.08
34 5.7 3.0 1.9 5.0 0.2
69 7.6 . 5.0 3.0 6.4 0.3
138 11.4 8.1 5.2 8.5 0.6
276 17.8 13.0 8.8 11.6 1.0
413 23.0 16.8 12.2 14.4 1.5
689 31.1 22.5 17.6 18.3 2.3
1034 38.8 28.2 23.8 22.0 3.3
Applied Rewash
stress Compaction level (% of maximum standard Proctor)
(kPa) 89% 84% 53%
7 0.9 1.9 0.06
14 1.6 2.1 0.09
34 3.3 3.6 0.2
69 5.1 5.9 0.3
138 8.4 9.4 0.5
276 13.0 13.7 0.9
413 16.4 16.2 1.3
689 22.2 19.2 2.1
1034 27.8 22.0 3.0
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Table 3.5 (Cont.)
Constrained Modulus Values (MPa) from One-Dimensional Compression Tests

Applied Clay
stress Compaction level (% of maximum standard Proctor)
(kPa) 89% 84% 53%

7 3.2 1.1 0.8
14 3.8 1.7 1.0
34 5.7 3.0 1.9
69 7.6 5.0 3.0
138 11.4 8.1 5.2
276 17.8 13.0 8.8
413 23.0 16.8 12.2
689 31.1 22.5 17.6
1034 38.8 28.2 23.8

1 psi = 6.9 kPa, 1 psi = 0.0069 MPa
3.4  Correlation of Modulus of Soil Reaction with One-Dimensional Modulus

Most finite element analyses of pipes and culverts use soil models that represent the
non-linear behavior of soils with reasonable accuracy. The hyperbolic model is used most
in the United States. It models non-linear stress strain behavior and considers both strength
and stiffness. Simplified pipe design has not progressed as far and still relies on the
empirical modulus of soil reaction, E’, as a measure of soil stiffness. The modulus of soil
reaction is based on Spangler’s Iowa formula and values are determined by back calculation
from test results. As noted in chapter 2, the relationship between the modulus of soil
reaction and true soil properties such as Young’s modulus, E, or the constrained modulus,
M; has been investigated by a number of researchers. While not yet a consensus, there is a
growing belief that the modulus of soil reaction can be related to the constrained modulus,
which is reasonable since the soil around a pipe is generally well confined. The relationship
between M, as expressed by the hyperbolic model, and E’ was investigated and is reported

here.

Two constants are required to define behavior of an elastic material. The hyperbolic
model uses Young’s modulus and the bulk modulus as the parameters. These parameters
are both affected by the soil strength and state of stress. The basic equations for stress-

vertical strain, and volumetric strain, as presented in Selig (1988), are:
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€ (3.1

(0,-0;) = )
1 €,
—+
E, (0,-0,)
where
o, = major principal stress, kPa, psi,
o = minor principal stress, kPa, psi,
(0, - 05) = deviator stress, kPa, psi,
€, = vertical strain, mm/mm, in./in.,
E, = initial tangent Young’s modulus, kPa, psi, and

(0, - 05), = ultimate deviator stress, kPa, psi,

and
B. €
o = i ~vol , (3.2)
1 - G'vol
€
u
where
O = mean stress = (0, + 2 05)/3, kPa, psi, (3.3)
B; = initial bulk modulus, kPa, psi,
€0l =  volumetric strain, and
€ = ultimate volumetric strain.

The one-dimensional compression test imposes the additional restriction that the

volumetric strain is equal to the vertical strain because the lateral strains are zero:
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Eq. 3.3 can be rearranged to:
o, = = ' (3.6)

substituted into Eq. 3.1, and simplified to:

0.667 €,
g, = + 0 3.7
1 €
— o —————————
E;, (0,-0;)

v

The initial Young’s modulus, a function of the hyperbolic model soil parameters, K
and n, and the confining stress, 0 is:

E, = K P(0,/P)" (3.8)

Substituting Eq. 3.6 into Eq. 3.8 gives:

The ultimate deviator stress is a model parameter that is a function of the actual
deviator stress at failure and the model parameter, R. In the hyperbolic model this is

written as:

(0,-0,), = Sg‘—gi)—f- , (3.10)
f

where the deviator stress at failure is a function of the soil friction angle, ¢, the cohesion

intercept, C, and the confining stress, 03, as follows:
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2C(cos ) +20,(sin )

. 3.11
© 1-sind G-10)

-0

1 703) =

Substituting Eq. 3.6 into Eq. 3.11, and the result into Eq. 3.10 gives the expression:

306 -0
2C(cos(b)+2(———’-n§-—l) sin

(©79), = (1 -sin )R,

(3.12)

Finally, the major principal stress, 0, can be expressed in terms of the vertical
strain (which by definition of the one-dimensional compression test is the volumetric strain),
by substituting Eqgs. 3.12 and 3.9 into Eq. 3.7:

0.667¢€, X
o, = +o_ . (3.13)
1 . €y
30_-0,|" 2C(cos$) +30_sind -0,sind
Kp| — -
2 2P, (1 -sinP)R,

This is the expression for the one-dimensional stress-strain curve and can be used to
compute the constrained modulus, M.

The above solution is based on the assumption of a linear failure envelope (constant
soil friction angle at all stress levels). To incorporate the effect of a curved failure

envelope, the expression for ¢ may be corrected by introducing a stress sensitive model
parameter, A, where:

¢ = ¢, - Ad log,, (0,/P) . (3.14)

Substituting Eq. 3.6 into Eq. 3.14 gives:

2P

a

3 0. -0
¢ = ¢, - A log,, (_m_i) _ (3.15)
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Substituting Eq. 3.15 into Eq. 3.13 produces a complete equation that can be solved
for the stress-strain curve under confined conditions. The complete expression is complex

but is solved by publicly available mathematics software packages such as MathCad.

From the stress-strain curve the secant constrained modulus can be computed at
various stress levels. The secant modulus is considered most appropriate for simplified
design of buried pipe as it represents average soil behavior over the stress range of interest.

Four sets of soil parameters were compared:

° Hyperbolic soil properties proposed by Selig (1988) were used to develop the SIDD
design method for reinforced concrete pipe. They are referred to as the Selig/SIDD
properties.

L Another set of hyperbolic soil properties proposed by Selig (1990) were developed
based on research focused on flexible pipe. These properties have been incorporated
into the finite element program CANDE and are the default values if the Selig soil
model is selected within CANDE. These properties are referred to as the
Selig/CANDE properties.

] E’ values proposed by Duncan and Hartley (1987) were developed based on finite
element analyses using hyperbolic soil properties previously proposed by Duncan et
al. (1980). They are referred to as the Duncan properties.

° E’ values proposed by Howard (1977) were developed based on back calculation,
using the Iowa deflection formula, from measured deflections on a large number of
projects. They are called the Howard properties.

The two sets of Selig soil properties include three general classifications of soil.
Each general classification is given the name of the soil group which was actually tested,
i.e., SW, ML, and CL. The two digit designation following the soil classification is the
density as a percent of maximum standard Proctor density. A similar system is used to
identify the Duncan Soil properties. Values of M, and E’, using the above four sets of data,

are compared for different compaction levels in fig. 3.13, which indicates the following:

L The Selig/CANDE properties produce values of M, that are consistently about twice
the values produced by the Selig/SIDD properties.

® At stress levels less than about 70 kPa (10 psi) the Selig/SIDD properties are

consistently similar to the values back calculated by Howard based on actual
installations.
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Figure 3.13 Comparison of Models for Secant Constrained Modulus
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° The Duncan properties are somewhat erratic relative to all three of the other sets of
properties.

The comparison in Fig. 3.13 suggests that for design purposes E’ can be assumed
equal to M, and that the Selig/SIDD properties are roughly equivalent to the Howard values
which represent a substantial amount of field data. This association further suggests that the
same soil model could be used for simplified design of rigid and flexible pipe. This is a
significant positive step in bringing together the currently diverse design methods used by
different industries. Tabulated design values for M, computed from the Selig/SIDD
properties at different stress levels are presented in table 3.6. These values can be used as a

direct substitute for E’ in design equations such as the Iowa formula.

The design values proposed in table 3.6 are compared with those determined by one-
dimensional compression test and reported in table 3.5 and in fig. 3.14. This figure shows a
poor match of properties from the two different sources. As noted previously, the problem
is thought to be with the procedures used for the one dimensional testing, rather than the

hyperbolic soil properties, which have had considerable successful use in design.

Table 3.6
Suggested Design Values for Constrained Soil Modulus, M;

Stress level Soil type and Compaction Condition
SWI5 SW90 SW8s

kPa (psi) MPa (psi) MPa (psi) MPa (psi)
7(1) 13.8 (2,000) 8.78 (1,275) 3.24 (470)

35 (5) 17.9 (2,600) 10.3 (1,500) 3.59 (520)
70 (10) 20.7 (3,000) 11.2 (1,625) 3.93 (570)
140 (20) 23.8 (3,450) 12.4 (1,800) 4.48 (650)
275 (40) 29.3 (4,250) 14.5 (2,100) 5.69 (825)
410 (60) 34.5 (5,000) 17.24 (2,500) 6.9 (1,000)
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Table 3.6 (Cont.)
Suggested Design Values for Constrained Soil Modulus, M,

Stress level ML95 ML90 MLS85
kPa(psi) MPa (psi) MPa (psi) MPa (psi)
7 9.76 (1,415) 4.62 (670) 2.48 (360)
35 (5) 11.5 (1,670) 5.10 (740) .2.69 (390)
70 (10) 12.2 (1,770) 5.86 (750) 2.76 (400)
140 (20) 13.0 (1,880) 5.45 (790) 2.97 (430)
275 (40) 14.4 (2,090) 6.21 (900) 3.52 (510)
410 (60) 15.9 (2,300) 7.07 (1,025) 4.14 (600)

Stress level CL95 C1L90 CLS85
kPa(psi) MPa (psi) MPa (psi) MPa (psi)
7 (1) 3.68 (533) 1.76 (255) 0.90 (130)
35 (5) 4.31 (625) 2.21 (320) 1.21 (175)
70 (10) 4.76 (690) 2.45 (3535) 1.38 (200)
140 (20) 5.10 (740) 2.72 (395) 1.59 (230)
275 (40) 5.62 (815) 3.07 (460) 1.97 (285)
410 (60) 6.17 (895) 3.62 (525) 2.38 (345)

35 CLSM Mix Design Study

A small scale study of CLSM mix designs was undertaken to investigate key
elements of CLSM behavior and provide guidance in the selection of a mix design for the
field studies reported in chapter 4. The study involved nine trial batches with different
quantities of sand, fly ash, cement, and water. Testing was done for flowability and

compressive strength. Materials were obtained from a nearby concrete batch plant.
The sand was fine aggregate for concrete batching per ASTM C 33. The component

quantities for the nine trial mixtures are shown in table 3.7a. The quantities listed are for

batch sizes of approximately 1 m®; however, the actual batch sizes were much smaller.
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Mix Component Quantities and Strength Results

a) Mix Constituents (kg)

Table 3.7

Material Mix designation
Nom A B C D E F X Y
Cement 44 30 59 44 44 44 44 36 44
Fly Ash 296 148 296 222 296 296 296 148 148
Sand 1570 | 1570 | 1570 | 1570 | 1720 | 1570 | 1570 | 1570 | 1570
Water 296 296 296 296 296 237 355 296 296
wic (1) 6.7 9.9 5.0 6.7 6.7 54 8.1 82 6.7
w/(c+fa) 0.87 1.7 0.83 1.1 0.87 0.70 1.0 1.6 1.5
(1)
b) Test Results
7 Day 1055 | NT@ | 1410 | SIS 825 | 1435 | 515 205 | NT®@
compr. (153) (205) | (75) | (120) | (209) | (75 30)
strength,
kPa (psi)
28 Day 1890 350 | 2710 | 1645 | 1295 | 2900 | 1115 540 295
compr. (275) | (51) | (393) | (239) | (188) | (421) | (162) | (79 (43)
strength,
kPa (psi)
Segre- None Yes Very | Little | Little | Very | Little Yes Yes
gation little little
Spread, mm 380 No 250 280 220 No 315 - No
spread spread spread
Notes: 1. ¢ = cement, w = water, fa = fly ash
2. Specimens A and Y were very fragile at an age of 7 days and broke up during the
removal of the plastic molds and/or capping. NT = not tested.
3. ASTM Provisional Standard PS 28-95, Test Method for Flow Consistency of
Controlled Low Strength Material
4, 6.89 kPa =1 psi, 0.45 kg =1 Ibs, 254 mm =1 in.

Specimen Preparation and Testing — Specimens were prepared in accordance with
ASTM Standard Test Method for Preparation and Testing of Soil-Cement Slurry Test

Cylinders (D 4832 - 88). The CLSM was mixed in a bowl with an egg beater type paddle

for 2-3 minutes. Water was added to the mixer first, followed by sand, then cement, and
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finally fly ash. The addition of fly ash to the mix resulted in an enormous increase in
flowability.

Flowability tests were conducted on all trial batches by placing a freshly mixed
sample of CLSM in a 75 mm (3 in.) diameter by 150 mm (6 in.) high open ended tube,
quickly lifting the tube vertically, and allowing the CLSM sample to flow into a circular
mound. The circular sample spread was then measured. A minimum acceptable spread of
200 mm (8 in.) and no segregation of water were adopted acceptance criteria based on guide
specifications of the Texas Aggregates and Concrete Association (TACA, 1989). These
criteria have been adopted by other agencies as well.

The cylinders for compression testing were prepared and tested as follows:
1. The fresh mix was placed in three or four cylindrical plastic molds 100 mm

diameter and 200 mm high (4 in. by 8 in.);

2. Specimens were allowed to set for 10 to 15 minutes, after which additional CLSM
was added to displace bleed water and a lid was placed loosely on the filled mold;

Specimens were allowed to cure overnight in the laboratory and were then moved to
a moist room;

(8}

4. Seven days after batching, two specimens of each mix were removed from the moist
room, the plastic molds were stripped, and the test cylinders allowed to air dry for
about 4 hours; and

5. The specimens were then capped with sulfur on both ends and tested in compression
up to the ultimate strength.

Strength tests were conducted in the same fashion on the remaining test cylinders at an age
of 28 days. In addition to monitoring load the cylinder strain was monitored with an LVDT

for determination of modulus of elasticity.

Results — Compression and flowability test results are summarized in table 3.7b,

along with observations of segregation. Findings include:

° Water to cement plus fly ash ratios greater than or equal to 1.5 produced the lowest
compressive strengths. For example at an age of 7 days the strength of Specimen X
was 205 kPa (30 psi) and Specimens Y and A broke up while being removed from
the plastic molds. An inability to conduct compression tests does not mean that the
mix 1is not suitable, only that the compression testing may not be an appropriate
method of quality control.
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] A 33 percent increase in cement content resulted in a 34 percent increase in the 7
day compressive strength and a 43 percent increase in the 28 day compressive
strength (Specimens Nominal and B).

o A 25 percent decrease in the amount of the Class F fly ash resulted in about a 50
percent decrease in compressive strength (Specimens Nominal and C).

] " A 10 percent increase in the amount of fine aggregate in the mix resulted in a 22
percent decrease in compressive strength (Specimens Nominal and D).

. A 20 percent reduction in the amount of water resulted in a 36 percent increase in
compressive strength (w/c ratio of 0.87 for Specimen Nominal and 0.70 for
Specimen E). Conversely, a 20 percent increase in the amount of water in the mix
(w/c ratio of 0.87 for Specimen Nominal and 1.0 for Specimen F) resulted in about
a 50 percent decrease in compressive strength when keeping the amount of cement
and fly ash the same.

] Water segregated from the mixes with low amounts of fly ash as indicated by
Specimens X, Y, and A. Specimen F which had more water than the others showed
little water segregating from the mix. The remaining specimens, all of which had
w/(c+fa) ratios of less than about 1.0, showed little or no segregation.

o Conversely, specimens with high amounts of fly ash (222 kg (488 1b) or greater) in
the mix met minimum spread requirements of 200 mm (8 in.) except for Specimen
E which fell over and which had the least amount of water. Specimens Y, X, and A
having 148 kg (326 1b) of fly ash did not meet the 200 mm (8 in.) requirement.

The importance of fly ash in improving flowability, controlling water segregating
from the mix, and increasing the compressive strength, is clearly indicated by these test
results. Also, even though class F fly ash has no cementitious properties, an increase in
compressive strength for increasing amounts of fly ash due to the pozzolanic reaction is
clearly evident. The w/(c+fa) ratio (including the amount of fly ash) is a good indicator of
expected material strength. Based on the results of this study, the mix design selected for
the CLSM field test had 46 kg/m® (78 Ib/ft’) of cement and a water to cement plus fly ash
ratio of 0.93. Additional details of the CLSM field test are provided in chapter 4.
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CHAPTER 4
INSTALLATION TESTS

Pipe installation practices were evaluated through field and laboratory tests. The
tests were designed to investigate the effects of different backfill materials and methods on

pipe performance.

4.1 Laboratory Soil Box Tests

Twenty-five tests were conducted in a specially designed indoor test facility, called
the “soil box,” which allowed backfilling and compaction of materials around test pipes in a
manner simulating certain aspects of field conditions. The soil box was designed for testing
pipes with an outside diameter equal to or less than approximately 910 mm (36 in.) and
trench widths varying from 1.5 to 2.5 pipe diameters. Tests were conducted with 760 mm
(30 in.) inside diameter pipes. Test variables included trench wall stiffness, backfill
material, method of compaction, haunching techniques, and bedding condition. The pipe,
soil, and trench walls were monitored with a wide variety of instruments. The laboratory
tests were conducted in part to evaluate the performance of pipe instrumentation being
developed for the field test program described in section 4.2. The laboratory test procedures
and data are presented in more detail in Zoladz (1995) and Zoladz et al. (1995).

4.1.1 Test Pipe

Three different types of pipes were included in the test program: (1) reinforced
concrete (concrete); (2) corrugated, smooth interior wall, high density polyethylene (plastic);
and (3) corrugated steel (metal). All test pipes were 760 mm (30 in.) in nominal inside
diameter and 0.9 m (3 ft) in length.

The three types of pipes tested in this program span a wide range of pipe hoop
stiffness and bending stiffness values and exhibit a wide range of pipe performance. The
plastic and metal pipes are considered flexible in bending, whereas the concrete pipe is stiff
in bending; however, the concrete and metal pipes are considered to have high hoop
stiffness whereas the plastic pipe has a low hoop stiffness. Based on the bending stiffness
values, plastic and metal pipes are typically considered flexible and the concrete pipe is

considered rigid.
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The reinforced concrete pipe was supplied by CSR/New England. Properties of the
pipe are summarized in table 4.1. The concrete compressive strength and the concrete

modulus of elasticity are estimated values, not test results.

Table 4.1

Section Properties of a Concrete Pipe for Laboratory Tests
Inside diameter, D;, mm (in.) 760 (30)
Wall and thickness, mm, (in.) Wall B, 89 (3.5)
Compressive strength, f.', MPa (psi) 28 (4,000)
Modulus of elasticity, E,, MPa (psi) 25,000 (3.7x10%)
Cross-sectional area, A, mm?*/mm (in.%/in.) 89 (3.5)
Wall moment of inertia, I, mm*/mm (in.%/in.) 58,700 (3.6)
Weight per unit length, W, kN/m (1b/ft) 5.6 (380)

The 900 mm (36 in.) diameter plastic pipe was supplied by Hancor, Inc. The pipe
wall profile is shown in fig. 4.1a. Section properties were calculated based on
measurements and the idealized geometry shown in fig. 4.1b, and are summarized in table
4.2. Two sets of section properties are provided; one assumes that the unbonded portion of
the liner (element 1) is effective in carrying stress, and the second assumes that the
unbonded portion is not effective. It is likely that the actual effectiveness of the liner is at
an intermediate level that will vary with the relative liner thickness. McGrath, et al. (1994)
have shown that for some corrugations the structural performance of the pipe is better
represented by section properties computed assuming the liner is not effective.  The
modulus of elasticity is time dependent and can be estimated based on McGrath, et al.
(1994). The value for the modulus of elasticity presented in table 4.2 is the AASHTO
specified short term modulus.

The galvanized corrugated steel pipe was supplied by CONTECH Construction
Products, Inc. Table 4.3 summarizes the pipe wall properties based on AASHTO (1996).
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Table 4.2
Section Properties of a Plastic Pipe for Laboratory Tests

Property Liner Liner
effective ineffective
Inside diameter, D;, mm (in.) 760 (30)
?is‘;ance from inside surface to centroid, Y , mm 28 (1.1) 32 (1.3)
in.
Short term modulus of elasticity, E, MPa (psi) 780 (1.1x10°)
Wall height, H, mm (in.) 76 (3.0)
Width of corrugation L, mm (in.) 100 (3.9)
Cross-sectional area A, mm?*mm (in.%/in.) 9.4 (0.4) 8.1 (0.3)
Wall moment of inertia I, mm*mm (in.*/in.) 6,100 (0.37) 5,100 (0.31)
Section modulus to inner surface, S;, 220 (0.34) 160 (0.24)
mm>/mm (in.%/in.)
Section modulus to outer surface, S, 130 (0.20) 120 (0.18)
mm>/mm (in.%/in.)
Weight per unit length, W, kKN/m (Ib/ft) 0.27 (18.4)
Table 4.3

Section Properties of a Metal Pipe for Laboratory Tests (AASHTO 1996)

Inside diameter, D;, mm (in.) 760 (30)

Corrugation size (in. X in., gage) 2-2/3 x 1/2, 16 gage

Modulus of elasticity, E, MPa (psi) 205,000 (3.0x107)

Specified thickness, mm (in.) 1.63 (0.064)

Cross-sectional area, A, mm?*/mm (in.%/ft.) 1.64 (0.064)

Wall moment of inertia, I, mm®*/mm 31 (0.0019)

(in.*/in.)

Weight per unit length, W, kN/m (Ib/in.) 0.35 (24.3)

The section properties of the test pipe and the bending stiffness and hoop stiffness

are compared in table 4.4.
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Table 4.4

Summary of Properties of Laboratory Test Pipe

a. SI units
Pipe E Wall A I PSy PSg
Type (MPa) height (mm?/mm) (mm*/mm) (kN/m/m) (kN/m/m)
(mm)
Concrete 25,000 89 89 58,700 5.2x10° 1.3x10°
Plastic 780 76 9.4 6,100 1.8x10* 4.3x10%
(w/ liner)
Metal 205,000 12.7 1.64 31.0 8.7x10° 7.3x10%
b. English units
Pipe E Wall A I PSy PSg
Type (psi) height (in.%/in.) (in.*/in.) (Ib/in./in.) (Ib/in./in.)
(in.)
Concrete 3.7x10° 3.5 3.5 3.6 750,000 19,000
Plastic 1.1x10° 3.0 0.4 0.37 2,600 62
Metal 3.0x107 0.5 0.06 0.0019 130,000 110

4.1.2 Soil Box

The soil box facility was designed to allow backfilling and compaction of the test

pipe in a manner representative of actual practice. The box was designed for the pipe with
an outside diameter of approximately 910 mm (36 in.) and trench widths varying from 1.5
to 2.5 pipe diameters. Fig. 4.2 is a schematic drawing of the primary elements of the soil
box. For any given test, the trench walls were fixed, but the cross-trench walls could be
raised, along with a platform surrounding the soil box, in 150 mm (6 in.) increments. This
allowed compaction equipment to move from the platform at one end of the test pipe across
the backfill to the platform on the other side of the test pipe, producing a reasonably
realistic representation of a compactor moving along an actual pipe.
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Figure 4.2 Primary Elements of the Soil Box

Trench Conditions - The soil box was designed to have two trench widths, a wide
trench, nominally 2.3 m (7.5 ft) wide, and a narrow trench nominally, 1.5 m (5 ft) wide. In
situ soils were modeled with three different trench wall stiffnesses by incorporating foam
material into the trench walls. Bare plywood walls were used as a “hard” trench wall test.
A very soft 100 mm (4 in.) thick foam rubber with a modulus of elasticity determined in
unconfined compression of 10 kPa (1.5 psi) was used for the “soft” trench wall tests and a
19 mm (0.75 in.) thick foam rubber with a modulus of elasticity determined to be 340 kPa
(49 psi) was used in tests with “intermediate” trench wall stiffness.

The narrow trench was constructed by placing two wooden inserts at each end of the
trench. The inserts have a height of 1.6 m (5.3 ft), length of 0.9 m (3 ft), and width of 130 mm
(15 in.) when the three 90 mm by 90 mm (U.S. 4x4 nominal lumber) posts are in place. When
bolted to the wide trench walls, the inserts reduce the width of the trench by 760 mm (30 in.).

Dimensions for each trench condition are illustrated in fig. 4.3. Values are given as a

function of the outside diameter of the pipe. The ranges are between concrete and metal pipe,
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which had the largest and smallest outside diameters, respectively, of the three pipe tested.
The posts behind the narrow trench inserts are removed in the soft wall setup to compensate

for the thickness of the foam.
4.1.3 Instrumentation

The behavior of the test pipe and the surrounding soil were monitored with several
types of instrumentation during backfill placement. These instruments are described in more
detail by Zoladz, (1995) and McGrath and Selig, (1996). Instruments included:

] A profilometer, using an LVDT, to measure pipe deflections and overall changes in
pipe shape at 1-degree intervals around the pipe circumference.

. Visual extensometers mounted in the plastic pipe to measure changes in the pipe’s
diameter and verify the accuracy of the profilometer.

L Strain gages mounted in the plastic pipe.
o Pipe-soil interface pressure cells installed in the concrete (fluid filled earth pressure

cells mounted in the pipe wall) and metal pipes (custom designed wall cutouts
supported on instrumented support beams).

] Pressures cells mounted in the trench walls to measure horizontal soil stresses.

L Inductance coil strain gages mounted on the soft foam liner to measure soft wall
displacements.

] A nuclear density gage to measure backfill moisture and soil density.

] A Proctor needle to measure soil strength in the haunch and bedding.

L Spring clamps mounted on the soil box were used to monitor gross pipe movements.

4.1.4 Backfill Materials and Compaction Equipment

Tests were conducted with pea gravel and rewash, characterized as Soil Nos. 4 and
6 in chapter 3. Hand tampers and shovel slicing were used to compact backfill in the pipe

haunch zone.
Two types of hand-operated compaction equipment were used to compact the

backfill: a rammer compactor (rammer) and a vibratory plate compactor (vibratory plate).
The rammer is a Wacker model BS 60Y powered by a 1900 Watt (2.7 horsepower), two-
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cycle engine (Wacker Corporation). The 280 mm (11 in.) wide and 330 mm (13 in.) long
ramming shoe is driven into contact with the soil at a percussion rate of about 10 blows per
second. The operating mass of the rammer is 60 kg (132 1b). The manufacturer’s literature
indicates that the generated dynamic force per blow is 10.2 kN (2,300 1b).

The vibratory plate is a Wacker model VPG 160B (Wacker Corporation) powered by
a 3000 Watt (4 horsepower), four-cycle engine driving counter-rotating eccentric weights
producing about 5,700 vibrations per minute. The vibratory plate compactor has an
operating mass of 78.5 kg (173 1b) and, per the manufacturer’s literature delivers a
centrifugal force of 10.5 kN (2,350 1b). The contact area of the plate is 535 mm by 610
mm, (21 in. by 24 in.).

Compactor calibration tests were conducted in the soil box with pea gravel and silty
sand to determine the soil unit weight achieved by varying the number of coverages with
each compactor (fig. 4.4). Based on these results, the pea gravel was compacted with one
coverage of the rammer or three coverages of the vibratory plate, while the silty sand was
compacted with three coverages of the rammer or five of the vibratory plate. The increased
number of passes required for the vibratory plate is a function of the much lower contact
pressures. Filz and Brandon (1993, 1994) tested almost identical compactors and found that
the peak force applied by the rammer was about four times greater than that applied by the
vibratory plate, even though the catalog values for dynamic force are equal. The vibratory
plate applied one half of the catalog value while the rammer applied twice the catalog value.

For tests where compaction of the haunch zone was required, two types of
haunching effort were used. With pea gravel backfill, a procedure called “shovel slicing”
was used, where the blade of a standard dirt shovel was sliced into the haunch material
repeatedly. For tests backfilled with rewash, both shovel slicing and “rod tamping” were
used. Rod tamping consisted of striking the backfill in the haunch zone with a 150 mm by
300 mm (3 in. by 6 in.) steel plate attached to a 2.4 m (8 ft) long steel pipe.

4.1.5 Test Procedures

Test variables included pipe type, trench width, trench wall stiffness, backfill

material, method of compaction, method of haunching, and bedding condition.
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The notation system, defined in table 4.5, was set up to identify test variables
quickly. Figures and tables in this chapter use this system and identify variables in the
order of test number, pipe type, trench condition, backfill, compactor, and haunching effort.
Variables are removed from the label when indicated elsewhere in a figure. In addition to
this notation, the backfill depth is often reported in terms of the normalized backfill depth,
(NBD). This is the depth of the backfill relative to the top of the pipe divided by the
outside diameter of the pipe. This simplifies interpreting the test results, as a normalized
backfill depth of -1.0 is the bottom of the pipe, -0.5 is the springline, and 0.0 is the top of
the pipe.

A total of 25 tests were conducted with the test variables listed in table 4.6. Because
of the number of variables involved, it was impossible to test all combinations. The research
team made selections of which combinations could provide the most information. Some
tests were conducted primarily to evaluate the effects of compaction and haunch effort in
the haunch zone. The backfill for these tests was brought only to a level at or near the
springline. Other tests were backfilled to about 150 mm, (12 in.) over the top of the pipe.

Table 4.5
Notation System for Laboratory Test Variables
Test variable Symbol Definition
Test No. 1-25
Pipe type CP Concrete pipe

MP Metal pipe

PP Plastic pipe

Trench conditions WH Wide trench with hard walls

Wi Wide trench with intermediate wall stiffness
WS Wide trench with soft wall stiffness

NH Narrow trench with hard walls

NI Narrow trench with intermediate wall stiffness
NS Narrow trench with soft wall stiffness
Backfill material PG Pea gravel
SS Silty sand
Method of compaction RM Rammer compactor
VP Vibratory plate compactor
XC No compaction
Haunching effort RT Rod tamping

SH Shovel slicing
XH No haunching
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Table 4.6
Variables for Laboratory Tests

Test | Pipe | Trench | Backfill Lift Compactor | Haunch | Bedding | Final

No. condition thickness effort backfill
mm, (in.) depth

(NBD)

1 CP WH PG | 305 (12) XC XH, SH C -0.68
2 CP WH PG 150 (6) VP, RM XH C -0.51
3 PP WH PG 305 (12) XC XH, SH c -0.33
4 PP WH PG 150 (6) VP XH C -0.33
5 PP WH PG 150 (6) RM XH C -0.33
6 PP NH PG 150 (6) RM XH C -0.33
7 MP WH PG 150 (6) VP XH C 0.65
8 MP WH PG 150 (6) RM XH C 0.65
9 PP WH PG 305 (12) RM XH C 0.50
10 CP WS PG 305 (12) RM XH C 0.30
11 CP WH PG 305 (12) RM XH U 0.30
12 PP WS PG 305 (12) RM XH U 0.33
13 CP NS PG 305 (12) RM XH U 0.30
14 PP NS PG 305 (12) RM XH U 0.33
15 PP NH PG 305 (12) RM XH C 0.33
16 CP NH PG 305 (12) RM XH C 0.30
17 CP WH SS 305 (12) XC XH, SH C -0.35
18 CP WH SS 305 (12) | VP, RM XH C -0.35
19 CP WH SS 305 (12) | VP, RM SH U -0.35
20 MP WH SS 305 (12) VP XH C -0.32
21 MP WI SS 305 (12) VP RT C -0.32
22 MP NH SS 305 (12) RM SH U -0.32
23 CpP NH SS 305 (12) RM SH U -0.35
24 Cp NI SS 305 (12) RM RT C -0.35
25 MP NI SS 305 (12) RM RT C -0.32
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Tests were typically conducted in the following steps. Deviations from these

procedures for specific tests are noted later.

Assemble soil box to required trench conditions.

Place and compact required bedding. Concrete and plastic pipes required a 230 mm
(9 in.) bedding thickness, the metal pipe required a 305 mm (12 in.) thickness.
Take density measurements at sidefill and invert locations.

Place pipe in trench and center the pipe between the lateral posts. The concrete and
metal pipes required “in-air” readings of the interface pressure cells prior to
placement. Take initial readings of all other instruments after placement.

Place first lift 305 mm (12 in.) deep for the concrete and metal pipes and 230 mm
(9 in.) deep for the metal pipe. If haunching is to be conducted, place half the layer
and haunch, then place the rest of the backfill.

Level off the lift and take uncompacted backfill readings. Uncompacted backfill
readings are taken for the horizontal soil stresses, pipe-soil interface pressures, and
soft wall displacements only.

Compact backfill as required and take compacted backfill readings. Compacted
backfill readings are taken for all the instruments.

Repeat sequence of placing backfill, taking uncompacted readings, compacting, and
taking compacted backfill readings until the final desired backfill depth is reached.

Remove backfill to at least 250 mm (10 in.) below springline and inspect the haunch
zone. For tests with pea gravel, this consisted of carefully excavating under the pipe
by hand. For tests with rewash, the pipe was removed and the backfill stiffness was
evaluated with the Proctor penetrometer.

Deviations from Typical Tests Procedures — Variations from the standard

procedures included the following:

Tests 1, 2, 3, 17, 18, 19 — Tests were conducted with a different compactors and/or
different haunching method on each side of the pipe. Five of these tests were
conducted with concrete pipe as it was felt that the compaction effects on one side

of the pipe would not have any effect on the other side. The other test was
conducted with polyethylene pipe with no mechanical compaction but with different -
haunching technique on each side of the pipe.

Instrumentation — Electrical problems resulted in tests 3, 4, and 5 being conducted
without the profilometer. Profilometer measurements were not conducted for the
concrete pipe after test 16, as the concrete pipe did not show any measurable
deflections. Horizontal soil stress cells were not installed in the trench walls until
after test 9.
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4.1.6 Results

This section presents and compares results from the 25 laboratory tests. Section
4.1.6.1 presents examples of each type of measurement taken, presented as a function of
backfill depth. Complete results of each test are presented separately in Zoladz, et al.
(1995). Subsequent sections compare results from different tests to demonstrate significant
findings from the tests.

4.1.6.1 Examples of Test Results

Backfill Unit Weight, Pipe Deflections, and Gross Pipe Movement — Figs. 4.5a to
4.5e show examples of the variations in several monitored parameters with increasing depth
of backfill for test 9, conducted with pea gravel backfill and compaction with the rammer.
Fig. 4.5 (a) indicates that the dry unit weight of the backfill was relatively uniform for each
layer placed. Fig. 4.5 (b) shows the deflection versus depth of fill and indicates that while
placing sidefill at elevations between the springline and the crown the pipe peaked
(increased in vertical diameter and decreased in horizontal diameter), and deflected only
slightly due to backfill over the top of the pipe. Figs. 4.5 (c) and 4.5 (d) show the lateral
pipe movement at the springline relative to the soil box and indicates that the pipe
springlines moved inward as backfill was placed from the springline to the crown. This is
consistent with the deflections reported in Fig. 4.5 (b). Fig. 4.5 (e) indicates the change in
elevation of the pipe invert as backfill is placed and indicates that the pipe is lifted up off
the bedding as backfill is placed from the invert to about the springline level.
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Figure 4.5 Soil Unit Weight, Pipe Deflections, and Pipe Movement (Lab Test 9)
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Profilometer Data — Fig. 4.6 illustrates results of the profilometer measurements.
The data from each profile measurement was smoothed by computing a running average of
five degrees over the entire circumference of the pipe. The deformed shape is magnified ten
times to improve readability. After magnification, the figures were aligned at the invert.

Profilometer data were also used to determine changes in vertical and horizontal deflection.

Horizontal Soil Stresses at the Trench Wall — Fig. 4.7 presents average horizontal
soil stresses at the trench wall, before and after compaction, from test 11 which was
conducted using the concrete pipe placed in a wide trench with hard walls, pea gravel

backfill, compaction with the rammer, and no haunching effort.

Pipe-Soil Interface Pressures — Fig. 4.8(a) presents the concrete pipe-soil interface
pressures at the springline and 45 degrees below the springline (called the haunch in the
figure) from test 11, both before and after compaction of each backfill lift. The figure
suggests that even without haunching, when the rammer compactor is used with a free
flowing material such as the pea gravel, significant radial pressures can develop at the

haunch.

Further, Fig. 4.8(b) suggests that the rammer compactor is capable of lifting the
concrete pipe sufficiently to lower the invert pressures, during compaction of the first lift.
This is beneficial toward developing a uniform pressure distribution around the pipe.

Plastic Pipe Strains — Fig. 4.9 presents the plastic pipe strains measured during test
15, conducted with the plastic pipe placed in a narrow trench with hard walls, pea gravel
backfill compacted with the rammer, and no haunching effort. Positive strains indicate
tension. The strains are consistent with the other data, i.e., they indicate very little
deformation during backfilling below the springline and then indicate that the pipe is being
squeezed inward at the sides during compaction above the springline. The outside strains
are higher than the inside strains which is consistent with the location of the neutral axis.

Longitudinal strains are about 50 percent of the magnitude of the circumferential strains.
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Proctor Penetration Resistance — Fig. 4.10 presents the results of penetrometer
testing taken from test 21, performed with the metal pipe in a wide trench with intermediate
stiffness walls, silty sand backfill, compacted with the vibratory plate, and the haunches
compacted with the rod tamper. Data are presented for penetration depth of 25 mm (1 in.)
and 50 mm (2 in.). The bedding soil was compacted for this test, and the invert showed the
highest resistance. The penetration resistance at 30 and 60 degrees was similar, suggesting
that the rod tamping used in the haunch zone was effective.

Penetration Resistance, kPa Penetration resistance, kPa
500250 © 0 250500
'90 g
—8— 25 mm pentration 0
. —O— 50 mm penetration
75 by ‘s

L g Degrees
from invert

Figure 4.10 Penetration Resistance of Bedding After Lab Test 21 in Silty Sand
Metal Pipe, Vibratory Plate, Compaction, and Rod Tamping

Trench Wall Displacements — Soft wall displacements for test 13 which was
conducted with the concrete pipe placed in a narrow trench with soft walls, pea gravel
backfill compacted with the rammer, and no haunching effort are presented in fig. 4.11.
Most of the displacement in the wall occurred after the first layer was compacted near the
inductance coils. As can be seen in fig. 4.11, as the first layer (NBD = -0.67) was
compacted the walls at the haunch elevation compressed. As the second backfill layer
(NBD = -0.33) was compacted, the walls at the springline elevation showed displacement
and the walls in the haunch elevation continued to compress. This trend continued as the
backfilling proceeded.
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4.1.6.2 Vertical Pipe Movement

The data on vertical pipe movement show that the plastic and metal pipe lifted up
from 15 to 25 mm (0.6 to 1.0 in.) when compacted with the rammer and from 0 to 12 mm
(0.0 to 0.5 in.) when compacted with the vibratory plate. As noted above, this difference
further emphasizes the significant difference in the applied stresses under the two types of
compaction equipment. Only a small percentage of the uplift was recovered as fill was
placed above the springline. The uplift is greater in silty sand than in pea gravel. When no
compaction was applied the pipe dropped during placement of the sidefill. Uplift was
significantly reduced when the trench walls were soft.

The values reported here should not be taken as indicative of actual field uplift
values because the test lengths of pipe were short. In the field, the uplift would be resisted
by the weight of pipe adjacent to the section being compacted (see section 4.2 for actual
field data). However, the tests do suggest that compaction of the sidefill below the
springline has the beneficial effects of reducing the invert pressure under a pipe. The
reduced uplift noted when trench walls are soft indicate that the compactive energy deforms
the trench wall and is less effective in forcing backfill into the haunch zone.

Only limited data were collected for the concrete pipe, and no uplift was noted. The
pipe had settled downward 1 to 2 mm (0.04 to 0.08 in.) when backfill was at the springline
level and up to 5 mm when backfill was placed to 300 mm (12 in.) over the top of the pipe.
When trench walls were soft, the settlements at the springline level and at the final level
were about twice the settlements measured for similar conditions with hard trench walls.

4.1.6.3 Pipe Profiles an(i Deflections

The presentation of pipe profile and deflection data is limited to the tests with the
plastic and metal pipes as the concrete pipe did not measurably deflect. The general trend
of the deflections versus depth of fill is shown in fig. 4.12. The figure indicates the
following:

] Most upward deflection occurs during compaction of backfill between the springline
and crown level; -
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Figure 4.12 Pipe Deflections in Laboratory Tests
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] The rammer creates much more upward deflection during compaction than the
vibratory plate (fig. 4.12(a)); and

] Much more upward peaking occurs with the hard trench walls than with the soft
trench walls, suggesting that some compaction energy is deforming the trench walls
rather than densifying the soil.

Deflection data for a wider range of variables are presented in fig. 4.13 which shows
the deflection magnitude when the backfill was at a level 150 mm (6 in.) above the
springline. This figure also shows trends similar to those in fig. 4.12, and shows that pipe
backfilled with silty sand deflects more during compaction than pipe backfilled with pea

gravel.

Deflections when backfill is at the springline, the top of pipe, and at the end of the
test, 300 mm (12 in.) or more over the top of the pipe for tests with pea gravel backfill are
presented in fig. 4.14. The figure again shows the significant difference in peaking between
the rammer and the vibratory plate, less peaking for installations with soft trench walls and
increased downward deflection for tests with soft trench walls, even with only about 300
mm (12 in.) of backfill over the pipe. This indicates that compaction against soft trench

walls is far less effective than against hard trench walls.

Profilometer and deflection data are shown in figs. 4.15 and 4.16 also demonstrate
the effect of compaction method and trench wall stiffness respectively. Fig 4.15 shows that
the rammer compactor produces more upward peaking than the vibratory plate. This
suggests that the energy delivered by the rammer compactor is more concentrated than that
delivered by the vibratory plate, which is consistent with the compactor calibrations that
showed compaction to a specific density is achieved with fewer passers of the rammer
relative to the vibratory plate. Fig. 4.16 shows that compaction when trench walls are soft
results in substantially less peaking than when the walls are hard. This suggests that in the
field contractors installing pipe in soft native soils will need to pay extra attention to the

compaction procedures.
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Figure 4.13 Pipe Deflections, Backfill Placed, and Compacted to the Springline Lift
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Figure 4.15 Comparison of Pipe Deflections with Pipe Type and Method of
Compaction, Backfill Compacted to the Springline Lift
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(a) Wide trench, hard vs soft wall stifiness (b) Narrow trench, hard vs soft wall stiffness

Deflected shapes magnified 10X

Undefizcted pipe Undeflecled pipe

@ 5, PP,WH, PG, RM, XH — ~ 14, PP, NS, PG, RM, XH
—— §, PP, VWH,PGRM X4 1 15, PP, NH_.PG, RM, XH
------ 12, PP, WS, PG, RM, XH

Wide trench Narrow trench
2 —

| +=increase [ Vertical 3
: Horizontal ]
g 1 7
2 i A
£ - _
(4] - .
5 B _

£ T
2 - i
(& - -
X -1} (wall stifiness) —
B Hard '
2L , | ! ! 1 ! “

: 5 g 12 15 14 6

Test Number Note: See table 4.5

for notation.

Figure 4.16 Comparison of Pipe Deflections with Trench Wall Stiffness,
Backfill Compacted to the Springline Lift
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4.1.6.4 Haunch Zone Pipe Support

Haunch zone pipe support is evaluated by both the pipe-soil interface pressures and
the penetration resistance. Interface pressure readings were made for the concrete and metal
pipe with both backfill materials while the penetration resistance was only measured for
tests backfilled with the silty sand.

The initial invert pressure, i.e., when the pipe is first placed on the bedding, is
somewhat random as it is very sensitive to small deviations in the grade along the length of
the pipe. Changes in the invert interface pressure during backfilling, however, indicate the
change in pipe support that results from compaction and haunching effort below the
springline. Fig. 4.17 shows the invert pressure under the concrete pipe for two tests
backfilled with pea gravel and compacted with the rammer. Test 10 was conducted with
compacted bedding and soft trench walls while test 11 was conducted with the central third
of the bedding uncompacted and hard trench walls. Neither test incorporated any effort at
compacting material in the haunch zone. Pressures before and after compacting each lift of
backfill are shown. Both figures show significant reduction in invert pressure when the first
lift, below the springline, is compacted. This confirms observations made in other tests that
the rounded pea gravel backfill readily flows under compaction and no specific effort is
required to compact it in the haunch zone (see below). However, when backfill is placed
above the springline, the pipe with soft trench walls and hard bedding shows large increases
in invert pressure while the invert pressure under the pipe with soft bedding and hard trench
walls returns to the pretest pressure. Both the trench wall and bedding stiffness are thought
to contribute to the reduced invert pressure. Fig. 4.18 shows a similar trend in the invert
pressure under the metal pipe.

100 H M : ' 1 1 * i N fu 100 L ! ' T ¥ i 4 * v I M LA =
o - Test 10 . E - © i Test 11 3 —
© ., | Compacted bedding /- 1 9% £ _ | iuncompactedbedding. 3 0&
& L Soft trench walls. 45 9 o t :Hard trench walls 45 g
s - . E =] 5 - : 3 >
% 0 40 g 2 0 = 2
< 3 S g 3 s
o. -5 4-5
[ ) PO WO oo o LR E § 1o S SO VU SOUS E §
= 3-102 2 4-10g
__100 S P T S = -100 La R S T . 3

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5
Backfill depth, NBD Backfill depth, NBD

Note: Filled symbols are after compaction and open symbols are before compaction

Figure 4.17 Invert Interface Pressure, Concrete Pipe with Pea Gravel Backfill
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Figure 4.18 Invert Interface Pressure, Metal Pipe with Silty Sand Backfill

The radial pressures around the concrete pipe for Tests 23 and 24, backfilled with
silty sand and compacted with the rammer when backfill was at a level 150 mm (6 in.)
above the springline are presented in Fig. 4.19. For Tests 23 and 24 the backfill was
worked into the haunch zone by shovel slicing and rod tamping respectively. These tests

show the following:

® Neither type of haunching effort produces significant radial pressure on the pipe at
an angle 22.5 degrees from the invert.

L The two types of haunching effort appear to provide equivalent pipe support at
angles of 45 degrees and more from the invert.

] Both tests showed essentially zero invert pressure after placing backfill; however,
the pressure for both tests was quite low when the pipe was placed, thus, the low
pressures are not a result of the haunch effort or compaction.

The interface pressures with backfill compacted up to the springline lift for a metal
and concrete pipe under similar installation conditions are presented in fig. 4.20. The figure
suggests that the metal pipe develops lower interface pressures at 45 degrees from the
invert; this seem consistent with the low weight and stiffness of the metal pipe.

107




Interface pressure, kPa
0 10 20

90

—&— Test 24, Rod tamping
—v— Test 23, Shovel slicing
i

1psi=6.89 kPa

....... Degrees
10 o from Invert

Figure 4.19 Radial Pressure Against Concrete Pipe
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Figure 4.20 Comparison of Radial Pressure Against Concrete and Metal Pipe

Proctor penetration tests were conducted only in the silty sand backfill because the
penetrometer is used only in fine-grained materials (ASTM D 1558). Penetration tests for
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tests 20 to 25 were conducted after testing with the pipe removed. Measurements were
conducted at the invert and 30 and 60 degrees from the invert. Tests 20 and 21 were
measured with a 640 mm? (1 in.?) tip, and tests 22 through 25 were conducted with a 480
mm? (0.75 in.?) tip.

The penetration resistance for tests 20 and 21, both conducted with the metal pipe
are compared in fig. 4.21. Test 20 was conducted without haunch effort while in test 21 the
haunch was compacted using rod tamping. The lower strength of the soil in the haunch
region is evident, which is consistent with the interface pressure data. The soil strength
under the concrete pipe for tests 23 and 24, which had soft bedding and compacted bedding,
respectively are compared in fig. 4.22. The data is consistent with the interface pressures
for the same conditions and shows that the soil strength is lower when the backfill is left
uncompacted. This is significant because it shows that the soft bedding remains relatively
soft even after pipe and backfill are placed.

Resistance, kPa

0 250500750
20

Both tests compacted
with vibratory plate
1psi = 6.89 kPa

Test 20, no haunching

Test 21, rod tamping

Degrees
from invert

Fi.gure’ 4.21 Penetration Resistance of Backfill Under Metal Pipe
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Figure 4.22 After Test Penetration Resistance of Backfill Under Concrete Pipe

4.1.6.5 Horizontal Soil Stresses at the Trench Wall

Horizontal backfill stresses were measured on both sides of the trench at the pipe
springline and haunch elevations. Horizontal soil stresses when the backfill is placed and
compacted to the springline lift for specific test variables are presented in figs. 4.23 to 4.25.
The horizontal stresses at the haunch elevation are greater than the stresses at the springline
elevation, which is consistent with the depth of fill. The horizontal soil stresses are
generally lower for the concrete pipe than for the plastic pipe, and the stresses were higher
with the hard and intermediate trench wall stiffness than with the soft wall stiffness. In
both the wide and narrow trench conditions, the horizontal soil stresses were, on average,
four times greater with the hard wall. The silty sand resulted in higher horizontal stresses
than the pea gravel. Horizontal stresses were, on average, 35 percent higher with the silty
sand material.

The horizontal stresses at the springline and haunch level for tests where backfill
was brought over the top of the pipe are shown in fig. 4.26. This figure also shows the
geostatic lateral pressure, assuming a K, value of 0.4, when the backfill was at the final
elevation. This figure demonstrates the significant loss of lateral support when the trench
walls are soft.

Trench wall displacement measurements show that large compression occurred in the

soft trench wall, on the order of 30 to 50 mm. Compression of the intermediate trench wall
was on the order of 0.5 mm to 1.0 mm (0.02 in. to 0.04 in.).
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4.1.6.6 Pipe Strains

Strains were measured for only three tests conducted with the plastic pipe and the
results are presented as strain versus normalized depth of fill in fig. 4.27. Gages were
located at the springline and invert both on the inner and outer walls of the pipe. Positive
readings indicate tension. Note that for all of these tests the backfill was compacted with
the rammer. The circumferential strains (fig. 4.27(a) and (b)) are consistent with the
deflection and other data collected, i.e., upward peaking of the pipe during compaction but
reduced in magnitude when the trench walls are soft. The outside wall strains were larger
than strains in the inside wall, which is consistent with the location of the centroidal axis.
The longitudinal strains are of opposite sign from the circumferential strains at the same

location.

Plots of strain versus deflection at every depth of fill, with the best fit regression
curve and correlation coefficient, r, and slope, m, are presented in fig. 4.28. The data are
relatively linear, with coefficients of correlation always greater than 0.74 except for the
longitudinal strain at the springline. The best fit curves generally pass through the origin of
the plot. The ratios of the slopes, presented in table 4.7, indicate the relative magnitude of
the longitudinal strain compared to the circumferential strain. The ratio is higher at the
invert than at the springline.

Table 4.7
Strain Versus Deflection in Plastic Pipe
Location Circumferential Longitudinal Ratio:
strain strain long./circumf.
(% strain/%defl.) { (% strain/%defl.)
Springline, inside 0.16 -0.07 -0.44
Springline, outside -0.31 0.14 -0.45
Invert, inside -0.18 0.11 -0.61
Invert, outside 0.21 -0.14 -0.67
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4.2 Field Tests

Full-scale field tests were conducted to gather data on the stresses, strains, and
deformations in pipe and the surrounding soil embedment as the pipe-soil system is being
constructed. The test program was developed to provide information that could improve our
understanding of the response of a pipe and the surrounding soil to installation variables.
The test program has been reported in detail in Webb (1995). Tables and figures of all of
the raw data are reported in Webb et al.(1995) and Zoladz et al. (1995).

A total of 14 tests were conducted. Each test included a reinforced concrete,
corrugated or profile wall polyethylene, and a corrugated steel pipe. Tests variables for each
test are described in table 4.8. Because of the number of variables involved, it was not
possible to test every possible combination of parameters. The specific combinations

selected were based on the judgement of the research team.

The general configuration for each test consisted of one length each of concrete,
plastic, and metal pipe installed end to end as shown in fig. 4.29 for the 900 mm (36 in.)
diameter pipe. The configuration for the 1,500 mm (60 in.) diameter pipe was similar. All
the pipes were backfilled to a depth of 1.2 m (4 ft) over the top of the pipe.

More detailed information on pipe, backfill, test sites, and other variables is

provided in the following sections.
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Table 4.8
Summary of Variables for Field Tests

Test | Trench | In situ Pipe Backfill Sidefill Haunch Bedding
No. | Width soil diameter material compaction compaction
(1) mm (in.) () 3)

1 N Sand 900 (36) Stone Rammer SS Fully compacted
2 N Sand 900 (36) Stone None N Fully compacted
3 W Sand 900 (36) Stone Rammer SS Sides compacted
4 w Sand 900 (36) Stone N Sides compacted
5 N Sand 900 (36) Silty sand None N Fully compacted
6 N Sand 900 (36) Silty sand Rammer SS Fully compacted
7 W Sand 900 (36) Silty sand | Vibr. plate N Sides compacted
8 w Sand 900 (36) Silty sand Rammer SS Sides compacted
9 N Clay 900 (36) - Stone Rammer SS Fully compacted
10 N Clay 900 (36) CLSM Rammer - Fully compacted
11 W Clay 900 (36) Stone Vibr. plate N Sides compacted
12 N Clay 1,500 (60) Stone None RT Fully compacted
13 W Clay 1,500 (60) Stone Vibr. plate RT Sides compacted
14 I Clay 1,500 (60) | Silty sand | Vibr. plate RT Sides compacted

Notes: 1. N = narrow (O.D. +0.6 m), W = wide (O.D. plus 1.8 m), and I = intermediate (O.D. plus 0.9 m).

2. S8 = shovel slicing, RT = rod tamping and N = none.

3. Bedding was compacted with the vibratory plate. Fully compacted means the bedding was
compacted over the full trench width. Sides compacted means that a strip directly under the pipe,

one third of the pipe outside diameter in width, was left uncompacted.
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4.2.1 Test Pipe

Eleven tests were conducted with 900 mm (36 in.) nominal inside diameter pipe, and
three tests were conducted with 1,500 mm (60 in.) nominal inside diameter pipe. The 900
mm diameter plastic pipe had a corrugated pipe wall with a liner to provide a smooth inside
surface. The 1,500 mm plastic pipe had a smooth pipe wall with a spiral rib on the outside.
The test pipe are referred to herein as the concrete, metal, and plastic pipes, respectively.
Pipe were supplied with no joints, allowing them to be laid end to end in the test trenches.
These pipes were selected to provide a range of pipe bending and hoop stiffnesses that is
typical in actual culvert applications.

The geometric, material, and stiffness parameters of the test pipe are summarized in
‘table 4.9. In this table, the nominal short term modulus of the polyethylene is reported and
used to calculate the pipe stiffnesses. Depending on the duration of an applied load, other
values of the modulus may be appropriate; however, since the tests discussed in this paper
are all of relatively short duration, the short-term modulus was deemed most appropriate.
The pipe stiffnesses are calculated values, rather than test values. Test values for plastic
and metal pipes are often lower than the calculated values.

Table 4.9
Summary of Properties of Test Pipe

Pipe type Diameter E A I PSy PSg
mm GPa mm%/mm | mm*mm KN/m? kN/m/m
Concrete 900 25 119 140,000 5,800)(103 170,000
1,500 169 402,000 5,000x10° 111,000
900 10.2 8,470 16x10° 390
Plastic corrugated 0.8
1,500 11.3 3,180 11x10° 36
profile
Metal 900 205 1.64 31 720x103 410
1,500 1.88 142 500x103 420

1 mm = .039 in., 1 GPa = 145x10° psi, 1 kN/m? = 0.15 psi
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Table 4.9 shows that the concrete pipe has high hoop and bending stiffness relative
to both the metal and plastic pipe, while the plastic pipe has low flexural and hoop
stiffnesses. However, the metal pipe has a low bending stiffness, which is consistent with
its traditional treatment as a flexible pipe but an intermediate hoop stiffness. Thus, each of
the three pipes represents a different regime of pipe stiffnesses. Low hoop stiffness has
been shown to cause significant reductions in load on buried pipe (Hashash and Selig,
1990).

4.2.2 Test Sites

Tests were conducted at two sites. At the first site, called here the “sand” site, the
soils were glacial deposits of coarse to medium sand (SP, SW-SM). Samples of these soils
were incorporated into the backfill test program reported in chapter 3 as Soils Nos. 11 and
12. In its natural condition, this sand was compact and partially cemented, providing a stiff
stable material to excavate trenches in and compact soil against. The ground water table
was near the bottom of the excavations for some of the tests and pumps were used to keep
the excavation reasonably dry. Seepage from the trench walls also affected some of the

tests.

The second site consisted principally of a sedimentary varved clay deposit (CL).
Samples of these soils were incorporated into the backfill test program reported in chapter 3
as Soils No. 9 and 10. This formation is generally quite soft and was selected to represent a
poor in situ soil condition, unfortunately the specific area selected proved to be stiffer than
anticipated. Penetrometer readings suggest unconfined compression strength values between
190 kPa and 380 kPa (2 tsf and 4 tsf), with values as low as 100 kPa (1 tsf) in some areas.
Some water seeped into the trenches during the tests; however, the rate was low enough that

positive action to control the water was not required.
4.2.3 Backfill

Thirteen of the fourteen tests were completed with either of two soil backfill
materials, in a 19 mm (3/4 in.), broadly graded crushed stone, called stone herein and

characterized as Soil No. 3 in chapter 3, and a poorly graded silty sand characterized as Soil
No. 6 in chapter 3.
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One test was backfilled to the pipe springline with CLSM. The batch design of the
flowable fill, shown in table 4.10, was selected based on the material study reported in
chapter 3. The target strength for the mix was 690 kPa (100 psi) at 28 days. The material
was delivered in two batches, and although the ready mix supplier reported that both
batches were identical, the strengths and stiffnesses of the two batches varied significantly,
as shown in table 4.11. This backfill above the springline was the in situ clay material

which is discussed in a subsequent section.

Table 4.10
CLSM Backfill Mix Design

Material Mass
kg/m” (1b/yd’)

Concrete sand 1606 (2707)

Cement 46 (78)
Class F fly ash 247 (416)
Water 274 (462)
Table 4.11
CLSM Strength Test Results
Batch Strength, kPa (psi) Modulus of elasticity, MPa (psi)
No. 7 day 28 day 7 day 28 day

1 420 (61) 779 (113) 165 (24,000) 234 (34,000)
2 248 (36) 434 (63) 70 (10,000) 145 (21,000)

4.2.4 Instrumentation

Extensive instrumentation was used to monitor the behavior of the test pipe and
surrounding soil as the backfill was placed and compacted at the sides of the pipe. The
instrumentation was largely the same as used in the laboratory tests and described in detail
in McGrath and Selig (1996). The instruments included a profilometer to monitor pipe

deflections and overall changes in the pipe shape, strain gages mounted on the metal and




plastic pipe, interface pressure cells on the concrete and metal pipe, and earth pressure cells
to monitor horizontal soil stresses at the trench wall-backfill interface and vertical soil
stresses in a plane 150 mm (6 in.) over the top of the pipe. In addition, inductance coil soil
strain gages that were not used in the laboratory tests were installed to monitor horizontal
soil displacements between the springline of the pipe and the trench wall. Instrument
layouts for each type of pipe are shown in figures 4.30 to 4.35.

Strain gages were mounted on the springlines, crown, and invert of the plastic and
metal pipes. At each position gages were mounted on the inside and outside surfaces in
both the circumferential and longitudinal directions.

Soil stresses were monitored with 230 mm (9 in.) diameter, fluid filled, earth
pressure cells with vibrating wire transducers. The cells mounted in the trench wall at the
springline (see figures 4.30, 4.32, and 4.34) had heavy backplates to minimize the effect of
non-uniform support against the trench wall. The cells over the top of the pipe were

sensitive to pressure on both faces.

In addition to the above instruments, standard survey equipment was used to monitor
pipe and backfill elevations. Observations were used to supplement measurements
whenever appropriate. Most instruments were read electronically using a computerized data

acquisition system.
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Figure 4.31 Longitudinal Instrumentation Layout for the Concrete Pipe
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Figure 4.33 Longitudinal Instrumentation Layout for the Plastic Pipe
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Figure 4.35 Longitudinal Instrumentation Layout for the Metal Pipe
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42,5 Test Procedures

The principal purpose of the test was to closely monitor the pipe and soil behavior
that take place during the installation and backfilling process. This was accomplished by
taking measurements after nearly every layer of backfill was placed at the sides of the pipe.
Backfill was placed to a depth of 1.2 m (4 ft) over the pipe for all tests. At the end of a
test, the site was immediately re-excavated to retrieve instruments and pipe and to inspect
the condition of the bedding.

If the protocol for a test called for compacting the bedding, then this was done
with the vibratory plate. Compaction of the backfill was accomplished with the same
vibratory plate and rammer compactors that were used for the laboratory tests (see section
4.1.4). If the test plan called for compaction, then two coverages were always used.
Backfill over the top of the pipe was compacted with a Bomag, double drum, walk behind,
and vibratory roller. The soil unit weights for each type of material and compaction
equipment was quite consistent. The data are summarized in table 4.12 for the stone and
silty sand materials, expressed as a percentage of maximum dry density (AASHTO T-99),
and in table 4.13 for the CLSM and the in situ materials over the pipe, expressed as wet
unit weight.

Table 4.12
Soil Compaction Test Results and Moisture Contents

Soil Compactor Test Compaction Test Results Average
type Nos. Moisture
Ave. % of Max. Stand. Dev. Content
Unit Weight | kN/m® (No. of
(AASHTO T99) | measurements)
Stone Rammer 1,3,9 92 0.5 (26) 2
Vibr. plate | 4,11,13 85 0.5 (14) 3
None 2,12 , 79 0.4(8) 4
Silty Rammer 6,8 95 0.2 (11) 8
d
Sa0¢ | Vibr. plate | 7,14 89 0.2 (13) 7
None 5 82 0.5 (6) 5

1 kN/m® = 6.4 1b/f
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Table 4.13
Compaction Test and Moisture Content Results for In Situ Soils

Soil Compactor | Test Nos. Ave. Wet Unit Stand. Dev. kN/m®
type Weight (No. of test
kN/m? measurements)

Insitu | Bomag | 1,3,4,6-8 20.1 0.6 (48)

sand

None 2,5 17 0.5 (6)

In situ Bomag 9-14 18.7 0.8 (28)

clay
CLSM - 10 20.9 0.2 (2)

1 kN/m® = 6.4 1b/ft

In general water contents during compaction were below optimum. Only a minimal
effort was made to introduce moisture to improve compactibility, as this was deemed more
closely related to actual practice. Moisture was added only when the material became dusty
and difficult to work with.

Note that although the vibratory plate compactor has a greater mass, the rammer
compactor produces substantially higher soil stresses during compaction because of the
smaller plate area and impact type of compaction. Table 4.12 shows that the rammer
produced significantly higher soil unit weights than the vibratory plate when the same

number of coverages were applied.

4.2.5.1 Trench Layout

As noted for each test, the concrete, plastic, and metal pipes were laid end to end as
shown in fig. 4.29. Most trenches were excavated twice, the first test was conducted in a
trench as wide as the pipe outside diameter plus 0.6 m (24 in.), called the narrow condition,
and then, while retrieving the pipe from the first test, the trench was widened to equal the
pipe outside diameter plus 1.8 m (6 ft) for the second test. For test 14, an intermediate
width of the pipe outside diameter plus 0.3 m (3 ft) was used. This trench was only
excavated once. Test 10, with CLSM backfill was conducted in a narrow trench that was

also excavated only once.




At each trench location, a custom fabricated manhole was set to provide access to
the test pipe. Test trenches were excavated in both directions, allowing a total of four tests
to be conducted without resetting the manhole. This arrangement allowed excavation to be
ongoing in one trench while readings were being taken during backfilling of the trench on
the other side of the manhole, thus optimizing the use of the construction equipment.

All trenches were benched, as shown in figs. 4.36, 4.37, and 4.38. The benching
resulted in a negative projection ratio of about 0.15 for the 900 mm (36 in.) pipe and a
positive projection ratio of about 0.36 for the 1,500 mm (60 in.) diameter pipe.

The concrete pipe was backfilled to the springline with the selected material for a
given test (see table 4.8). Excavated in situ material, compacted in the same fashion as the
select backfill was used above this level. The selected backfill material was placed to 150
mm (6 in.) above the top of the plastic and metal pipe. For all pipe, the excavated in situ
material was used as final backfill from a level 150 mm (6 in.) above the top of the pipe to

the ground surface.

4.2.5.2 Typical Test Sequence

Tests were typically conducted in the following steps. Trench configurations and
lifts are shown in figs. 4.37 to 4.38. Deviations from these procedures for specific tests are
noted in the following subsections.

1. Trenches were excavated to 150 mm (6 in.) below the bottom of the test pipe. The
same backfill to be used for the test was placed as bedding and compacted according
to the requirements of that particular test. Pipes were set in place, and all
instrumentation that was in place was read.

2. Backfill was placed in layers approximately 300 mm (12 in.) thick after compaction.
Some adjustments were made to the thickness to allow layers to come to certain
target elevations and to accommodate the different outside diameters of the test pipe.
After compaction, all in-place instrumentation was read.
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3. The trench wall earth pressure cells and the soil strain gages were installed after
placing, but before compacting, the backfill layer that came to 150 mm above the
springline. The instruments were installed by digging small holes in the backfill.
The trench wall was smoothed as much as possible prior to placing instruments up
against it. Sand was tamped into any space that was left behind the instrument.
After placing the instruments the holes were refilled, initial readings were taken,
then the layer was compacted according to the requirements of the plan.

4, The backfill layer that came to 150 mm (6 in.) above the top of the pipe was left
uncompacted for a width of 0.45 m (18 in.) centered over the test pipe. After the
rest of this layer was compacted, the earth pressure cells used to measure vertical
soil stresses were installed, and initial readings were taken.

5. Backfilling was completed with four approximately equal layers of in situ material,
of approximately equal thickness, until the total cover over the pipe was about 1.2 m
(4 ft). Most instruments were read after compacting each layer; however
profilometer readings were taken only after the second and fourth layers.

6. When the fourth layer of in situ material was compacted the test was complete. The
pipe were re-excavated to examine the bedding and haunching and to retrieve the
test pipe and instruments for use on the next test.

4.2.5.3 Deviations from Typical Test Procedures

The vagaries of the weather, the need to complete all of the tests in a short period of
time, and a desire to maximize the information obtained from the tests resulted in deviations

from the standard procedures. These deviations are summarized below.

Test 4 — While excavating to remove the test pipe after completion of the test, a
thunderstorm flooded the trench and prevented inspection of the bedding under the plastic

and metal pipe.

Tests 5, 6, 7, 8, and 14 — After placing and compacting the bedding for test 5, the
trench was left overnight. During this time, groundwater seepage saturated the silty sand
creating a running soil condition. The soft soil was excavated and replaced in the worst

areas. To avoid this problem, the bedding material was changed to a concrete sand.

Test 11 — After placing and compacting the first layer of in situ material over the
top of the pipe, heavy rains occurred for several days, flooding the trench and filling the test
pipe with water. The water was pumped out and the instruments dried. Work was restarted

after a delay of 7 days.
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Test 10 — CLSM backfill was used for test 10. For this test, imported bedding was
not used. The pipe were set on bags of gravel to hold them off of the trench bottom and
allow the CLSM to flow underneath. Bags of gravel were also placed on top of the plastic
and metal pipe to minimize the risk of flotation. The CLSM was produced at a concrete
batching plant and delivered to the site in a concrete truck. The flowability of the mix was
checked using a 75 mm (3 in.) diameter, 150 mm (6 in.) long tube. CLSM was placed and
leveled in the tube which was then raised. The CLSM had to spread to a diameter of at
least 225 mm (9 in.) to indicate proper flow characteristics. CLSM was received in two
deliveries. The first delivery was used to bring the fill to about 150 mm (6 in.) above the
invert. About 2 hours later, the second lift was placed to just above the pipe springline.
While the second lift was being placed, the metal pipe came free and raised up about 40
mm (1.6 in.).  The plasﬁc pipe, even though it was lighter, did not lift. Apparently the deep
corrugations allowed the plastic pipe to develop an anchorage to the first pour that
prevented flotation. The morning after the CLSM was placed, the trench backfilling was
completed. For all pipe, the in situ clay material was placed and compacted with the
rammer compactor to a level 150 mm (6 in.) above the crown. Backfill above this point
followed the standard test procedures. Because of the nature of the test and the plan to
leave the pipe in the ground for a period of time, the soil strain gages and earth pressure
cells were not installed for this test. The CLSM test pipe were left in the ground for 22

days before excavation.
4.2.6 Results

Measurements taken during the field test program covered a wide range of behavior.
Complete data are presented in Webb (1995), Webb et al. (1995), and Zoladz et al. (1995).

4.2.6.1 Pipe Deflections

Plots of deflection versus depth of fill are presented in fig. 4.39 for 9 of the 14 tests.
The deflections generally reflect the effects of the compaction method used and the soil unit
weights that were achieved. Tests compacted with the rammer, which creates the highest
soil stresses during compaction, showed the most peaking (upward deflection when the
backfill is at the top of the pipe, (depth of fill equal to 0.0 m), and the least downward
deflection as backfill was placed over the crown. The final deflected shape for pipe with
rammer compacted backfill was always ovalled upward at the end of the test. The vibratory




plate compactor produced less peaking and more downward deflection as backfill was
placed over the top of the pipe. This is consistent with the lower density produced by the
vibratory plate. Most pipe in tests where the vibratory plate was used for compaction were
deflected downward at the end of the test. Tests with no compaction applied to the backfill
showed about the same peaking as tests compacted with the vibratory plate; however, these
tests with no compaction showed more downward deflection due to backfilling over the
pipe. One exception to the above trends is test 7 (Fig. 4.39c and 4.39d). Even though
backfill was compacted with the vibratory plate, the deflection profile appears to follow that
of test 5 which had no compaction. The backfill material for test 7 was the silty sand, and
no haunching effort was applied. As noted above, this material is very sensitive to
moisture. When this test was backfilled to a level 150 mm (6 in.) over the pipe, it was left
overnight. On the following morning, several instruments showed that the backfill had
softened overnight. The earth pressure and several pipe-soil interface pressure cells showed
drops in stress levels, and the invert interface pressure cell showed an increase. It is
believed that the silty sand took up moisture from the surrounding native material and
flowed into the voids in the haunch zone, causing the drop in pressure and the increased
deflections. Also, the deep corrugations of the plastic pipe, which are not filled with
backfill in the lower region of the pipe may have provided a larger void, relative to the
metal pipe, which could explain part of the increased deflection in the plastic pipe for this
test. '

The metal pipe showed less peaking than the plastic pipe. This is expected because
of the higher metal pipe bending stiffness. Peaking behavior is affected more by this pipe
stiffness than is downward deflection due to backfilling over the pipe. Downward
deflection is controlled more by soil stiffness. This is also reflected in the higher peaking
deflections in the 1,500 mm (60 in.) diameter plastic pipe than in equivalent tests in the 900
mm (36 in.) diameter plastic pipe. The 1,500 mm (60 in.) plastic pipe had the lowest pipe
bending stiffness of all of the pipe tested.

The smaller deflection change during the last backfill increment for the tests with no
compaction of the backfill indicates a reduction in the rate of deflection. This could
suggest that the pipe deflected sufficiently to mobilize support from the trench walls, which
were much stiffer than the backfill or that the low compactive effort left voids in the
backfill around the pipe which closed up, resulting in a higher rate of deflection during the

first increments of backfill.
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Figure 4.39 Typical Plots of Vertical Deflection Versus Depth of Fill
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Vertical deflections for all tests are summarized in figs. 4.40a and 4.40b which show
the peaking deflection, the change in deflection during backfilling over the top of the pipe,
and the final deflection at the end of the test. Fig. 4.40(c) shows the ratio of change in
vertical deflection to change in horizontal deflection caused by backfilling over the crown.

Together, Figs. 4.39 and 4.40 show:

o Significantly more peaking occurred with the silty sand backfill than the stone
backfill. This is probably because of the higher lateral pressures generally exerted
by the lower strength of finer grained soils and the reduced pressures due to the
higher strength from the interlocking of the stone particles.

o The downward deflection in test 11 was higher than expected based on other results.
This was particularly true of the plastic pipe. Test 1l was flooded during the
backfilling process, and the flooding apparently softened the backfill and the trench
walls. This was the only test where the soil strain gages showed significant outward
movement of the trench walls during backfilling over the top of the pipe.

L Tests with wide trenches show slightly more peaking during backfilling to the top
and slightly less downward deflection due to backfilling over the top of the pipe
than equivalent tests in narrow trenches. Tests 1 and 3 and tests 6 and 8 are used
for this comparison.

° The ratio of the vertical to horizontal deflection due to backfilling over the crown is
generally larger in absolute magnitude for the plastic pipe than for the metal pipe,
particularly when backfill was compacted with the rammer, where the ratios were
substantially larger than 1.0. This is thought to be due, at least in part, to the lower
hoop stiffness of the plastic pipe. This type of pipe has been shown to undergo
substantial circumferential shortening relative to traditional flexible pipe, when
subjected to earth load. This shortening is seen as a decrease in vertical and
horizontal diameter, hence the higher ratios of vertical to horizontal deflections.
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4.2.6.2 Pipe-Soil Interface Pressures

The development of interface pressure on the concrete pipe for tests 1 to 4, with
stone backfill, and partial data for tests 5 to 8, with silty sand backfill are presented in fig.
4.41. The end of test interface pressures for tests 1 to 4 in a radial plot are presented in fig.
4.42. In both figures, the invert interface pressures are the changes after the pipe was set in
place, thus the weight of the pipe is not reflected.

The highest invert pressure occurs for test 2 where no haunching or compactive
effort was pro{/ided. Test 1, compacted with the rammer and haunched, shows a decrease in
invert pressure as the sidefill was placed and compacted, suggesting that the compactive
effort actually lifted the pipe off the bedding. Tests 3 and 4 show intermediate results.

Interface pressures at thirty degrees from the invert are low regardless of compactive
effort or haunching effort. This suggests that design should always consider a region of the
haunch as unsupported after backfilling.

The benefit of higher compactive effort is clearly seen in the interface pressures at
60 degrees from the invert. The two tests where the backfill was compacted with the
rammer show high pressures. This is beneficial for pipe performance as it indicates more
uniform support for the pipe. Interface pressures at this location for test 4, compacted with
the vibratory plate, showed very little difference from the pressures in test 2, where no

compactive effort was applied.

For tests 5 to 8, with silty sand backfill, the data is similar to that for the tests with
stone backfill. The tests where the rammer compactor was used show higher interface
pressures. Of interest are the drops that occur for tests 6 and 8 at a backfill depth of about
0.1 m (4 in.) over the top of the pipe. This drop occurred overnight. As discussed
previously for the deflections of test 7, the silty sand is sensitive to moisture and the
overnight delay in backfilling may have allowed the material to take up water and soften.
For tests 6 and 8, the drop in the radial pressure does not appear to be paralleled with an
increase in deflection for the plastic and metal pipe, as was the case with test 7. This is
likely because tests 6 and 8 had backfill with higher unit weights, from the rammer
compaction and haunching during backfilling.
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Interface pressure data for the other tests was similar. The end-of-test invert
interface pressures under the 1,500 mm (60 in.) pipe (tests 12 to 14, all with haunching)
were between 100 and 200 kPa (14.5 and 29 psi), which were all less than the pressure
under the concrete pipe in test 2 without haunching.

4.2.6.3 Trench Wall Soil Stresses

Earth pressure cells were installed at the trench wall at the springline level to
monitor the soil stress at this location as backfill was placed. Fig. 4.43 presents the data
from tests 5, 6, and 7 in the form of stress versus depth of fill. Figure 4.44 is a bar chart
showing, for all tests where data was taken, the trench wall stress when the backfill was at
the top of the pipe, and at the end of the test. Typical trends, as displayed by the figures

include:

° In tests with no compaction, lateral stresses do not develop at the springline level of
any type of pipe until the backfill level rises oyer the top of the pipe. During
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backfilling above the crown, trench wall interface stresses develop beside the plastic
and metal pipe, but stresses next to the concrete pipe are never greater than about 5
kPa. The trench wall stress beside the flexible pipe develops because the pipe is
deflecting outward into the soil.
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For concrete pipe in tests with compactive effort applied, horizontal stresses develop
during compaction; however, as backfill is placed over the pipe the rate of increase
in lateral stress at the trench wall is reduced.

While the sidefill is placed, the plastic and metal pipe only develop lateral pressure
when the sidefill is compacted with the rammer. When the sidefill is compacted
with the vibratory plate only small trench wall stresses develop. These observations
are consistent with the development of peaking deflections as the sidefill is
compacted with the rammer, but not with the vibratory plate.

The only direct comparison to evaluate trench wall stresses developed in narrow and
wide trenches are tests 1 and 3. For all three pipe the trench wall stress developed
while placing the sidefill was greater for test 3, the wide trench. The change in
horizontal stress as the backfill was placed over the pipe was the same in test 3 as
in test 1. The net effect was that all three pipe developed more lateral stress when
installed in the wide trench.

For the tests with no compaction, less trench wall stress developed in test 5, with
silty sand backfill, than in tests 2 and 12 with stone backfill.

The only instances in which no trench wall stresses developed while placing sidefill
was with the flexible pipe in test 7. Actually, as shown in fig. 4.43, a small stress
developed during placement of the sidefill, but it dissipated overnight. This is
consistent with the previous hypothesis that the sandy silt backfill in this case
softened while testing was stopped for the night.

For test 11, during which the backfill became flooded, trench wall stresses
developed to about the same magnitude as during tests 4 and 13, even though higher
deflections developed during those tests.

For the plastic and metal pipe the final trench wall pressures are generally the same
at the end of all tests, regardless of type of compaction, backfill type or trench
width, even though as noted above, the deflections varied widely.

4.2.6.4 Vertical Soil Stresses Over Pipe

Vertical soil stresses directly over the pipe and sidefill are summarized in table 4.14.

The stresses are normalized by the geostatic soil stresses at the elevation of the gages based

on the soil unit weights in table 4.12. The ratio of the crown to sidefill stress is not the

arching factor but is indicative of the arching of load onto, or off of, the pipe. No trend

was noted based on diameter or trench width, thus the data is presented by type of

compaction.
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Table 4.14
Normalized Vertical Soil Stresses Over the Test Pipes

Concrete Plastic Metal
Location
Mean Std. | Mean Std. | Mean Std.
Dev. Dev. Dev.
a. Rammer compactor (Tests 1, 3, 6, 8, 9)
Crown 0.96 0.10 0.91 0.21 1.06 0.08
Sideﬁll | 1.03 0.26 1.19 0.19 1.21 0.17
Crown /sidefill 94 77 38
(%)
b. Vibratory plate compactor (Tests 4, 7, 11, 13, 14)
Crown 1.04 0.08 0.96 0.22 0.98 0.24
Sidefill 1.11 0.14 1.15 0.11 1.05 0.09
Crown /sidefill 94 83 93
(%)
¢. No compaction (Test 2, 5, 12)
Crown 1.28 0.23 0.94 0.20 0.99 0.17
Sidefill 0.87 0.21 1.10 0.20 1.11 0.22
Crown /sidefill 147 85 89
(%)

Table 4.14 suggests the following:

With one exception, the crown vertical pressure is highest over the concrete pipe,
lowest over the plastic pipe and intermediate over the metal pipe. This is consistent
with traditional load theory. The one exception, the metal and concrete pipes with

the rammer used for compaction, is thought to be anomalous.

For the plastic and metal pipes, the vertical soil stress over the sidefill is always
greater than over the crown. This is also true for the concrete pipe with compaction.
However, for the concrete pipe with no backfill compaction, the crown stress is

greater than the sidefill soil stress.
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4.2.6.5 Pipe Wall Strain

The development of strains in the pipe wall during backfilling paralleled the
development of deflections. As an example, figs. 4.45 to 4.47 present the invert and right
springline strain versus depth of fill for tests 8, 12, and 2, respectively. These tests
represent the three types of compaction, two pipe sizes, and two backfill types used in the
tests. Peaking develops in test 8 during placing and compaction of the sidefill and stabilizes
or partially reverses as fill is placed over the pipe. In test 2, with no compaction, there is
very little peaking strain, but notable strain as backfill is placed over the crown. The plastic
pipe strains in test 12, with the 1,500 mm (60 in.) diameter pipe, are quite small because
the profile depth of the 1,500 mm (60 in.) plastic pipe is less than that of the 900 mm (36
in.) diameter pipe, thus there is far less bending response. Strains in the metal pipe follow
the same trend as the plastic pipe but are much smaller, which is consistent with the relative
depth of the pipe walls. Longitudinal strains in the plastic pipe are significant relative to
the circumferential strains, while longitudinal strains in the metal pipe are small at all

locations.

Figs. 4.48 and 4.49 show the total strain versus deflection at the end of each test for
the plastic and metal pipes, respectively. Also shown on the figures is a linear regression
curve for the data. For both pipe there is a reasonable linear correlation between the two
parameters, but the slopes and intercepts of the regression curves differ significantly.

Observations include:

] The left and right sides of each pipe show approximately the same trend, thus
reasonable symmetry was achieved in the tests;

° The reversed slopes for the regression lines of the inside and outside circumferential
gages suggest that strains are dominated by bending effects. (The one exception to
this is the crown gages in the metal pipe, where the outside gages show a negative
slope. The relatively parallel slopes suggests that hoop forces are significant. The
reason for this is not clear at this time.);

. The longitudinal strains in the metal pipe are small and do not appear to be related
to deflection; and

. The longitudinal strains in the plastic pipe are significant (of equivalent magnitude

to the circumferential strains) at all locations except at the inside gages at the
springline.
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The total strains can be separated into bending and hoop components. The Poisson
effect circumferential strains are removed by using the measured longitudinal (€,_,,) and

circumferential (€, ) strains at the same location and the relationships:

Cc~m
€ __+€__V
_ c-m 1-m
ec-d - 5 ’ (41)
1-v
and
€ __+€ __V
- I-m c-m
€ 4 = —_— 4.2)
1-v
where
€54 = circumferential strain due to direct stress,
€em = measured circumferential strain,
Y = Poisson’s ratio
2
€im = measured longitudinal strain, and
€14 = longitudinal strain due to direct stress.

Assuming a linear distribution of strain across the wall, these direct strains can then

be separated into the components due to hoop thrust and bending moment using the

expressions:
€ -€ .
— _ c¢-d-out c-d-in -
eh - ec—d—out cout > (4‘))
c. —¢
in out
€o-imn = €c-d-in " Cn > (4.4)
and
eb—out = ec-d-out_eh 4 (45)
where
€ = strain due to hoop compression forces,
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€.4.out = outside strain caused by direct stress,

€.4in = inside strain caused by direct stress, and

Cin = distance from centroidal axis to inside surface, mm, in.,
Cout = distance from centroidal axis to outside surface, mm, in.,,
€poout = strain on outside surface caused by bending forces, and
€b-in = strain on inside surface caused by bending forces.

Figs. 4.50 and 4.51 show the hoop and bending strains for the plastic and metal
pipe versus depth for tests 6 and 2, respectively. The bending strains, as expected, parallel
the deflection plots. The magnitude of the hoop strain in the metal pipe is very small and
the data does not appear to be meaningful. The hoop strains in the plastic pipe show a
trend of increasing with the depth of fill, at approximately the same rate at the invert, crown
and springlines, however the peak occurs at the crown. This higher value at the crown is
mostly caused by thrust developed during placement of the sidefill, and thus is not
indicative that the crown develops thrust at a higher rate than the springlines because of soil
placed over the top of the pipe.

Springline hoop strain, and crown, invert, and springline bending strains for the
plastic pipe are presented in table 4.15. Table 4.16 presents similar data for the metal pipe,
except that, as noted, the hoop strains are not presented because the data did not appear

meaningful. This data will be discussed in more detail in chapter 5.
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Note: Test 6 was installed with silty sand backfill in a narrow trench and
compacted with the rammer.

Figure 4.50 Hoop and Bending Strains for Field Test 6
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Note: Test 2 was installed with silty sand backfill in a narrow trench with
no compaction.

Figure 4.51 Hoop and Bending Strains for Field Test 2
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Table 4.15
End of Test Strains — Plastic Pipe

Test Compaction and Pipe strains, %
No. Backfill . - )
Springline Bending, outside surface (2)
Hoop -
compression Sprlngline Invert Crown
a. 900 mm (36 in.) Diameter Pipe
1 Rammer/Stone -0.058 -0.060 -0.050 0.184
3 Rammer/stone -0.107 -0.095 0.042 0.170
9 Rammer/stone -0.147 -0.075 -0.012 0.112
6 Rammer/silty sand -0.062 -0.248 0.345 0.305
8 Rammer/silty sand -0.055 -0.296 0.172 0.285
4 V. plate/stone -0.102 -0.067 ND - 0.041
11 V. plate/stone -0.186 -0.009 ND ND
7 V. plate/silty sand -0.202 0.053 -0.396 -0.080
2 None/stone -0.069 0.148 -0.390 -0.111
5 None/silty sand -0.089 0.076 ND -0.117
10 CLSM -0.113 -0.073 ND 0.020
b. 1,500 mm (60 in.) Diameter Pipe
12 None/stone -0.155 0.084 ND -0.013
13 V. plate/stone -0.117 0.033 ND 0.228
14 V.plate/silty sand -0.116 0.006 ND 0.248
Notes:
1. ND indicates no data, one of the gages did not function properly.
2. Inside bending strain is directly proportional to the outside bending strain, based on

the distance from the centroidal axis and is not shown.
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Table 4.16

End of Test Strains — Metal Pipe

Circumferential bending strain, %

Test Compaction and

No. Backfill Springline Invert Crown

a. 900 mm (36 in.) Diameter Pipe
1 Rammer/Stone ND 0.0034 0.0075
3 Rammer/stone -0.0258 0.0249 0.0161
9 Rammer/stone -0.0179 0.0016 0.0110
6 Rammer/silty sand -0.0333 0.0582 0.0144
8 Rafnmer/silty sand -0.0515 0.0740 0.0302
4 V. plate/stone 0.0078 -0.0186 -0.0192
11 V. plate/stone -0.1107 0.0041 ND

V. plate/silty sand -0.0220 -0.0780 0.0015

2 None/stone 0.0373 -0.0492 -0.0246
5 None/silty sand 0.0444 -0.1143 -0.0113
10 CLSM -0.0161 ND -0.0029

b. 1,500 mm (60 in.) Diameter Pipe
12 None/stone 0.003 -0.042 -0.024
13 V. plate/stone 0.004 -0.008 -0.003
14 V.plate/silty sand -0.003 -0.028 0.007

Notes:

1. ND indicates no data, one of the four gages did not function properly.

4.2.6.6 Sidefill Soil Strain

Soil strain gages were installed to measure the change in distance between the
springline of the test pipe and the trench wall. Data from these gages for test 3, with
rammer compacted stone backfill, and test 5, with uncompacted silty sand backfill, is shown

in fig. 4.52, which presents the average displacement from both sides of the pipe. These

figures show the following characteristic trends:
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L A substantial part of the extension of the gages occurs during compaction of the first
backfill layer after the gages are installed (some of which may be a seating effect as
the fill around the gages is compacted);

o For tests with compacted backfill very little displacement occurred thereafter (fig.
4.51(a)); and

. For tests with uncompacted backfill a notable compression occurred as backfill was
placed over the crown (fig. 4.51(b)).

Data for the change in width of the soil sidefill during backfilling over the top of
the pipe are presented in table 4.17.

: Table 4.17
Change in Soil Sidefill Width During Backfilling Over Top of the Pipes
Test {In situ soil| Concrete | Plastic Metal
mm mm mm

1 sand 0.1 0.2 0.0
3 sand 0.4 0.2 0.2
9 clay 0.5 0.5 0.5
6 sand -0.5 -1.4 -1.0
8 sand gages not installed

4 sand 2.0 1.1 0.1
11 clay 1.7 -0.5 0.9
13 clay 0.5 -0.4 -0.3
7 sand -1.1 -2.2 -1.3
14 clay data erratic

2 sand data erratic
12 clay 1.1 -2.9 -3.0
5 sand -0.8 -5.1 -4.5
10 clay gages not installed
1 mm = 0.04 in.
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Figure 4.52 Sidefill Soil Displacement During Backfilling
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In general the data from these gages were variable; but when several like conditions

were averaged together, trends emerge. Several variables are evaluated in table 4.18.

Table 4.18
Change in Soil Sidefill Width — Grouped by Test Variable
Variable Concrete | Plastic Metal Tests included
Type Condition mm mm mm
In situ soil sand 0.0 -1.2 -1.1 1,3,4,5,6,7
clay 0.9 -0.8 -0.5 9,11,12,13
Backfill stone 0.9 -0.3 -0.2 1,3,4,931 1,12,1
silt -0.8 -2.9 -2.3 5,6,7
Compaction R 0.1 -0.1 -0.1 1,3,9,6
VP 0.8 -0.5 -0.1 4,7,11,13
N 0.2 -4.0 -3.8 12,5
Pipe 900 mm 0.3 -0.9 -0.6 1,3,4,5,6,7,9,1
diameter 1
1,500 mm 0.8 -1.6 -1.7 12,13
Trench Narrow 0.1 -1.7 -1.6 1,5,6,9,12
width  Nyg'g e | 07 04 0.1 3.4,7,11,13
All data 0.4 -1.0 -0.8
1. mm = 0.04 in.

The data in table 4.17 can also be combined with the deflection data to evaluate
movement of the trench wall. This evaluation was made and indicates that test 11, which
was inundated with rain, showed outward trench wall movement of 4 to 6 mm (0.15 to 0.25
in.). This movement undoubtedly resulted from the inundation and explains the higher
deflections in test 11 relative to other tests with similar variables. In general, tests where
the native soil was sand showed less than 2 mm (0.08 in.) of outward trench wall movement
and tests where clay was the native soil showed 1 to 3 mm (0.04 to 0.12 in.) of outward

movement. These small movements are unimportant.
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CHAPTER 5
ANALYSIS OF TEST RESULTS

Analytical models of buried pipes were evaluated againét the field data to investigate
the accuracy of the models and then to improve understanding of the physical processes that
take place during installation.

5.1 Elasticity Model

The Burns and Richard (1964) elasticity solution was discussed in chapter 2. As
noted it is idealized in that it models an elastic ring embedded in an isotropic elastic
medium. In some respects this makes it particularly ill-suited to model the field tests
because of the use of a trench installation, the shallow cover, and the variable haunch
control; however, the model still shows trends that match the data, and are informative to

examine.

Analyses were conducted for the field tests using the three 900 mm (36 in.) diameter
pipes and the three 1500 mm (60 in.) diameter pipes, with soil properties representing the
stone backfill with densities of 95 percent of maximum standard Proctor density (rammer
compaction) and 85 percent (no compaction) of maximum standard Proctor density. Based
on table 3.6, for an SW material with a vertical soil stress at the springline of about 4 psi,
one-dimensional soil moduli, M, of 16 MPa (2300 psi) and 3.5 MPa (500 psi) were
selected for the compacted and uncompacted conditions respectively. The Burns and
Richard model is not capable of evaluating the stresses and deformations that occur while
placing backfill at the sides of the pipe, thus the results of the analysis are compared to the
changes in deflection, stress and strain that occurred while placing backfill over the top of
the pipe. The applied vertical soil stress was 23 kPa (3.3 psi), representing the free field
stress at the crown of the pipe at the end of backfilling. Considering the generally warm
weather and test durations of several days, the plastic pipe data was converted to thrusts and
moments using a modulus of elasticity of 500 MPa (72,500 psi).

Table 5.1 compares the results of the analysis with the Burns and Richard method

using the equations for a full-slip pipe-soil interface with field data from Test Nos. 1, 2, 3,
and 9.
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Results from the field tests are only differentiated when significant differences are present.
The table indicates that the predictions are in general agreement with the trends shown in

the field data. The main observations are:

] The Burns and Richard analysis shows almost no change of bending moment, thrust,
or deflection in the concrete pipe as a result of the change in soil stiffness. This is
anticipated as the concrete pipe is so stiff, both in bending and in hoop compression
that the soil stiffness change from 3.5 to 16 MPa (500 to 2400 psi) is not
significant.

] For the concrete pipe, the measured interface pressures are lower than the Burns and
Richard predictions. This is believed to be the result of the trench installation,
which would reduce the vertical load on the pipe and greatly reduce the lateral
pressure.

] The measured interface pressures for the metal pipe and plastic pipe are in
reasonable agreement with the predicted pressures.

° Predicted vertical soil pressure near the top of on the plastic pipe are relatively
uniform for both soil conditions. The measured data is uniform for the loose soil
condition but less so for the dense soil condition. The vertical pressure
measurement for the plastic pipe was taken at 150 mm over the top of the pipe,
which could have resulted in a more nearly geostatic stress than would exist closer
to the pipe.

® The predicted deflections for the metal and plastic pipe embedded in compacted soil
are in good agreement with the measured deflections.

L The predictions for deflection in loose soil underestimate the measured values for
both the metal and the plastic pipe. This may represent the result of the lack of
haunching, which Burns and Richard cannot model, or indicate that the dumped
backfill leaves voids that allow greater deformation when the first lifts of backfill
are placed. Data on deeper installations would be required to evaluate this.

] The field data for thrust in the plastic pipe, appears to be affected by several factors.
Lowest thrust was measured in the dense stone in a narrow trench in the sand in situ
soil (test 1). Only slightly higher thrusts were measured in the loose stone in a
narrow trench in sand in situ soil (test 2). Much higher thrust was measured in the
dense stone in the wide trench in sand in situ soil (test 3) and still higher values
were measured for the dense stone in a narrow trench but in the clay in situ soil
(test 9). In all cases, the field vertical arching factors are less than the Burns and
Richard predictions. As noted in Section 4.2.6.5, the metal thrust strains were not
analyzed.

] Measured bending moments are variable relative to the Burns and Richard solution.
The crown moments are substantially lower than the invert moments, which is
expected because of the haunching effect. Invert moments are on approximately the
same order of magnitude as the Burns and Richard for the plastic and metal pipe.
Measured springline moments for the metal pipe are much lower than predicted,
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while for the plastic pipe the measured moments at the springline are somewhat
lower than predicted in the loose soil and higher than predicted in dense soil. The
low springline moments may be the due the influence of the trench walls. The
overall match of measured to predicted moments is actually a little surprising for the
loose soil, since the deflections were under predicted.

Overall, the match between the Burns and Richard predictions and the measured data
is quite good considering the idealized model and the uncertain approximations, such as the
estimated modulus of elasticity; however, the predictions pertain only to the changes in
behavior due to backfilling over the top of the pipe.

5.2 Computer Analysis of Field Test Results

Analysis of the field tests was undertaken with CANDE, Level 3. Complete finite
element meshes were developed to represent the installation conditions of the tests.

The finite element meshes for analysis of the 900 mm diameter and 1,500 mm
diameter pipe installations are shown in figures 5.1 and 5.2, respectively, which also show
the boundaries of the trench and various soil zones. Descriptions of the soil zones are
provided in table 5.2. The same mesh was used for both the narrow and wide trench
installations by changing element assignments from in situ soil to backfill as shown in the
figures. Symmetry was assumed about the vertical centerline of the pipe. The pipe was
divided into 20 segments, each segment extending for an arc length of nine degrees.

Undisturbed in situ soils were modeled with estimated linear elastic properties while
placed soils were modeled with non-linear behavior using the Duncan (1970) hyperbolic
Young’s modulus with the Selig (1985) hydrostatic hyperbolic bulk modulus. The CANDE
User Manual, Appendix A, (CANDE, 1989) contains two sets of Selig bulk modulus
properties, called the “modified,” which are the defaults, and the “hydrostatic,” which must
be input manually. Based on the evaluation in chapter 3, the hydrostatic properties were
used for the analyses reported here. Soil properties and compaction levels used to model
the various soil zones are summarized in table 5.3. Although the field tests were conducted
to a depth of 1.2 m (4 ft) over the test pipe, the analyses were continued to a depth of 6.1
m (20 ft) to investigate implications of the various installation conditions under more
demanding loading conditions.
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Table 5.2

Soil Zones Used in FEM Analysis of Field Installations

Soil Zone Label in
Figures 5.1 and 5.2

Zone Description

Undisturbed native soil

Natural soil formation, sand or clay

Compacted bedding

150 mm deep layer of compacted backfill

Central bedding

150 mm deep, 300 mm wide layer of backfill, loose or
compacted as required for specific tests

Void Loose soil (ML49) under all conditions, even when
haunching was specified
Haunch Compacted backfill material if haunching was specified,

otherwise loose backfill material

Embedment zone fill

Backfill material with properties based on achieved density

Loose crown

‘Backfill material with properties of loose soil

Native backfill

Compacted native backfill material

Table 5.3
Soil Properties Used in FEM Analysis
Common Name Compacted | Soil Model CANDE
: Density (1)a YDe:si,g’nal'slcér;1 l(l)lru .
% |kN/m Ou(rll\%I;a) o)
Undisturbed native sand - ~ | linear elastic 28
Undisturbed native clay - — | linear elastic 7
Compacted native soil sand 96 | 20.1 { hyperbolic SW95
clay 90 | 18.7 | hyperbolic CL90
Loose stone 79 | 17.9 | hyperbolic SWS80
Stone compacted with vibratory plate 85 | 19.3 | hyperbolic SW8s5
Stone compacted with rammer 92 | 20.7 | hyperbolic SW90
Loose silty sand 82 | 13.0 | hyperbolic ML8O
Silty sand compacted with vibratory plate 89 | 14.3 | hyperbolic ML90
Silty sand compacted with rammer 95 | 15.4 | hyperbolic ML95
II\I.Ote’:;}.le compacted density is reported as the average percentage of maximum dry density,

LI N

per AASHTO T 99, measured in the field, and as the wet density measured in the field.
Selig soil properties include the hydrostatic bulk modulus values.
1 MPa = 145 psi, 1 kN/m” = 6.4 pcf
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5.2.1 Modeling of Construction Effects During Sidefill

Modeling pipe-soil interaction while placing the sidefill requires a method to
introduce compaction effects. Compaction effects are the pipe deformations and interface
pressures that result from the process of bringing backfill soil from the loose state at which
it is placed to its final density. The soil-culvert interaction that takes place during this stage
of construction can be significant; however, the hyperbolic soil models available in CANDE
were not developed to address this load condition. CANDE was tested to evaluate several
methods of modeling compaction effects, without program technical changes, and to provide
guidance to pipe designers who must use available software packages. Three approaches
were taken in this effort:

[y
.

Applying vertical loads to the surface of the just placed layer of backfill;

2. Squeezing the most recently placed layer of backfill between vertical upward and
vertical downward forces; and '

Applying horizontal nodal forces directly to the pipe.

Wl

Methods 1 and 2 have the advantage of creating pipe distortion and movements as a
result of the pipe-soil interaction that takes place as a consequence of forces applied by a
compactor. However, when using an elastic soil model, removing the compaction force
results in a rebound of the pipe. Also, to correctly model the compaction problem, the
model should start with the properties of a loose soil, having a low strength and stiffness,
and finish with the properties of a compacted soil. Yet, again, the hyperbolic soil model was
not developed to provide this transition from significantly different states of soil density, nor
can it simulate the cumulative deformations that result from successive passes of the
compactor. Efforts at using Methods 1 and 2 were unsuccessful in creating deformations
representative of those in the field, and in general were unsuccessful in creating any
significant peaking effects.

Method 3 is the least sophisticated of the three techniques in that it requires a
separate algorithm or chart to provide guidance on the magnitude of the forces to be
applied. Key variables in this are the soil friction angle, the size and type of compactor,
and the size of the pipe. Nodal forces were applied to represent the placement of layers of
backfill, as they were in the actual field tests. The distribution of the nodal forces assumed
that the compaction pressures were of uniform magnitude for a depth of 300 mm (12 in.)
below the soil surface. This is demonstrated in figs. 5.3 and 5.4 for both pipe sizes.
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Figure 5.3 Construction Increment Thicknesses for Field Tests
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Pressures, (kPa) corresponding to

nodal forces:
— Compaction Sail type
= Stone Silty sand
Rammer 3.4 6.9
Vibratory plate 0.9 1.8
None 0.7 14

Nodal forces computed as pressure
times member length

a. 900 mm Diameter Pipe

1575 mm Equivalent Nodal Pressures, (kPa):

Compaction Soil type
Stone_ Silty sand

Vibratory plate 0.3 0.6
None 0.2 Nottested

b. 1500 mm Diameter Pipe

Note: 1psi =6.89 kPa

| Figure 5.4 Application of Nodal Forces to Model Compaction Effects
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For the metal and plastic pipe, the analysis showed that, for a given type of soil,
compaction, and pipe size, the forces required to match the field deflections were
consistent. Although the modeling was completed using concentrated nodal forces,
equivalent pressures were calculated to assist in comparison of the two pipe sizes. The
pressures that best matched the field deflections for each combination of parameters are

presented in table 5.4.

Table 5.4
Applied Pressures (kPa) to Represent Compaction Effects
Soil Type Compaction Type/ Pipe Diameter (mm)
Rammer | Vibratory Plate None
900 900 1500 900 1500
Stone 3.4 0.9 0.3 0.7 0.2
Silty sand 6.9 1.8 0.6 1.4 --

1.0 psi = 6.89 kPa

Table 5.4 shows that the compaction pressures are twice as great for the silty sand
as for the stone, and substantially smaller for the 1,500 mm (60 in.) pipe than for the same
type of compaction for 900 mm (36 in.) pipe. Pressures that model the vibratory plate are
only slightly larger than those for no compaction.

It is interesting to note the relatively small pressures required in the CANDE model
to produce the observed field peaking effects. Part of this is because CANDE is a two-
dimensional model, thus the model represents compaction forces applied to an infinite
length of the pipe, all at the same time. In the real three-dimensional world, the compaction
forces spread longitudinally away from the compactor location and a length of pipe greater
than the loaded portion resists the applied load, thus, the concentrated load to cause the

observed peaking would be greater than the force in the two-dimensional model.

A simple expression was developed based on the above pressures to predict the
compaction pressures under other conditions. The expression assumes that the lateral
pressures on the pipe are related to the at-rest lateral pressure of the soil, which is computed

as the vertical stress times 1-sin ¢, where ¢ is the friction angle of the soil in a loose
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condition. Values of ¢ were selected from the CANDE User Manual, Appendix A, from
the Selig “hydrostatic” soil properties. The resulting expression (which is only developed in

SI units) is:
np = 1.3P(1 -sin¢)® _970 2 (5.1)
dc-250
where
np = nodal pressure used in CANDE model, kPa,
P = total compactor force, kN (not less than 4 kN to account for gravity
effects of backfill),
¢ = friction angle of soil in loose condition, degrees, and
dc = centroidal diameter of pipe, mm.

Table 5.5 compares the nodal pressures predicted by the Eq. 5.1 with the pressures
actually used in the CANDE analyses.

The equation was developed based on limited data but suggests several items to

consider when selecting compaction equipment and backfill:

] The lateral force applied to a pipe is sensitive to the friction angle as indicated by
the fact that the compaction of the silty sand, with a loose friction angle 8 degrees
lower than that of the stone, resulted in twice the compaction effect;

° Required compaction pressure drops significantly with increasing diameter; and
] The vibratory plate, which densifies soil by vibration, rather than by impact like the
rammer, produces only slightly more compaction deflection than the gravity weight

of the soil (remember, however, that the rammer produced about 5 percent greater
density, per AASHTO T-99 for the same number of passes).
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Table 5.5
Computed and Applied Nodal Pressures

Compactor Diam. Soil Nodal pressure (kPa)
Type | Force | @™ | Type ¢ Eq 5.1 | CANDE
(kN) (degrees) analysis
stone 36 34 34
Rammer 20.5 900 silty 8 77 6.9
sand
stone 36 0.9 0.9
900 :
Vibratory 59 silty 28 1.8 1.8
plate sand
stone 36 0.3 0.3
L300 iy 28 0.5 0.6
sand
stone 36 0.7 0.7
None 40 1 900 Moy 28 1.4 14
sand
1,500 stone 28 0.2 0.2

Note: 11b =0.454 kg, 1 in. = 25.4 mm, | psi = 6.9 kPa,

5.2.2 Results

The CANDE analyses predicted behavior during backfilling that is in substantial
agreement with the results of the field tests. There are some notable exceptions that will be
discussed below. The deflections, moments, thrusts, and shears in the pipe wall, and
interface pressures for each analysis are presented in appendix A. Summary plots are
presented here.

5.2.2.1 Deflections

The match between the field test data and the CANDE analyses can best be
investigated by comparing the plots of deflection versus depth of fill. This comparison is
presented in figs. 5.5, 5.6 and 5.7 for tests with (1) the 900 mm (36 in.) diameter plastic
pipe with soil backfill; (2) the 900 mm (36 in.) diameter metal pipe with soil backfill; and
(3) the 900 mm (36 in.) diameter pipe with CLSM backfill and all 1500 mm diameter pipe,
respectively. These figures generally show that the peaking deflection during sidefilling and
the deflection due to overfill are modeled quite well with the CANDE analyses.
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For tests 2 and 5 on 900 mm diameter pipe with uncompacted backfill, the field data
show an increase in deflection of about 1 percent for the first lifts of backfill over the pipe,
up to about 600 mm (24 in.) over the pipe, as shown in figs. 5.5b, 5.5¢, 5.6b, and 5.6e.

For the last two lifts, from 600 mm to 1,200 mm over the top of the pipe, the rate of
change of deflection is closer to that predicted by the CANDE analyses. The effect, evident
with both stone and silty sand backfill, is thought to be the result of the large void resulting
from a lack of haunching effort and smaller voids that remain from backfill placement and
do not get collapsed because no compactive effort is applied. This could be considered a
seating effect. When backfill is compacted, it is pushed into intimate contact with the pipe
and the trench wall, and voids in the backfill are eliminated. If the backfill is not
compacted, then these voids are eliminated during overfilling and result in a significant
deflection increment. This effect is apparent for the plastic pipe in test 12 (1,500 mm, fig.
5.7¢) but not for the metal pipe. Test 12 was haunched, and the effect may also be less
apparent because the trench is relatively narrow (pipe diameter to trench width ratio of 0.7
for test 12 versus 0.6 for tests 2 and 35) and the stiff trench walls may have a greater effect.

In test 7, the plastic pipe deflections, fig. 5.5g, also increased more during placement
of fill over the top of the pipe. Test 7 was backfilled with silty sand, compacted with the
vibratory plate to 90 percent of maximum standard Proctor density, but no haunching effort
was applied. Test 4 (figs. 5.5d), with the same test variables except that the backfill was
stone did not show this effect. The silty sand is uniform, relatively fine grained and very
sensitive to moisture content, as evidenced by the saturation and loss of bedding compaction
in test 5 (see section 4.2.5.3) that was remedied by introducing a bedding layer of coarser
sand. The sensitivity to moisture and the presence of voids due to lack of haunching may
have permitted the backfill to deform, and drop in average density as fill was placed over
the top of the pipe. The stone backfill of test 4 would be more stable under moist
conditions. This effect was readily evident in the plastic pipe, which has deep corrugations
that do not get filled near the invert. The metal pipe, which has less prominent
corrugations, shows the same effect but with a lower magnitude.

The plastic pipe in test 11, fig. 5-5j, showed a higher deflection trend than predicted
by the CANDE analysis or as seen in the metal pipe, Fig. 5-6j. This test was inundated
during construction when the backfill was at a level about 450 mm over the top of the pipe,
and construction was halted for about 1 week. Even though the clay in situ soil was
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relatively stiff during excavation in the dry it became soft when wet and could and have
deformed during the delay. This is the test where the most trench wall movement was
recorded by the soil strain gages (see section 4.2.6.6). The same trend was not noted in the
metal pipe. This may be because the metal pipe is substantially stiffer under long term
loads than the plastic pipe.

The pipe in test 10, figs. 5-7a and 5-7b, showed peaking effect during the placement
of the CLSM which was not modeled well by the assumptions used in the CANDE analysis.
The hydrostatic nature of the loading is somewhat different from the horizontal loads
applied. Undoubtedly, with additional data, a method of modeling this peaking could be
developed.

Other observations related to the deflection comparison include:

] The CANDE predictions of deflection due to backfill over the top of the pipe
generally match the field deflection quite well. This suggests that the Selig
hydrostatic properties are an appropriate design choice.

° For the plastic pipe, the vertical deflection decreases with increasing depth of fill
over the pipe at a greater rate than the horizontal diameter increases, while for the
metal pipe the vertical and horizontal diameter change at approximately the same
rate. This trend, apparent in both the field data and the CANDE analyses, suggests
that the plastic pipe is shortening circumferentially due to the low hoop stiffness.

° The CANDE analysis indicates that the 1500 mm diameter plastic pipe deflects
about 0.5 percent under its own weight. This was not evident in any of the other
tests, but the 1,500 mm plastic pipe was about 10 times less stiff than the 900 mm
diameter plastic pipe or either of the steel pipe. Field data were not taken to
monitor this effect.

L Related to the previous observation, while the peak deflection that developed in the
CANDE model for this pipe reasonably matched the measured peak deflection, the
CANDE model actually produced far too much peaking effect that is partially
obscured because of the initial downward deflection caused by self weight. The
Spirolite type of profile wall may mobilize a greater length of pipe than the
corrugated proﬁle}s.

5.2.2.2 Interface Pressures
The CANDE vertical and horizontal pressure distribution against the concrete pipe

for tests 1 and 2 are shown in figs. 5.8 and 5.9, respectively. These figures show the

principal characteristics of all of the figures in appendix A.
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Results for test 1, which was backfilled with stone, compacted with the rammer, and
haunched are shown in fig. 5.8. The vertical upward pressure distribution at the bottom
results from the assumption of a void, even though haunched. This was borne out in the
field tests by the low interface pressures measured at thirty degrees from the invert and the
low penetration resistance measured after removal of the pipe. The vertical pressure
distribution at the top of the pipe is relatively uniform at 1.3 m of cover, but shows a
significant drop at 6.1 m of cover. This is apparently the result of not compacting directly
over the pipe. The side pressure at the invert is low at all stages of backfilling; however
significant pressures develop just above and below the springline. These are only changes
in pressure caused by fill over the crown, because the CANDE analysis did not model

compaction pressures.

Results for test 2, which was backfilled with stone, without compaction and without
haunching are presented in fig. 5.9. The upward vertical pressure distribution at the bottom
of the pipe is peaked at the invert and does not develop the secondary pressure at the side
of the pipe. This results from the lack of side support and haunching effort. At the top, the
vertical downward pressure distribution is uniform at all depths. For test 2 without
compaction, all of the backfill over the pipe is of uniform density and this is reflected in
the pressure distribution. The lateral pressure distribution at the side of the pipe is similar
to that in test 1, but lower in magnitude.

Measured interface pressures and soil stresses at the trench wall and 150 mm over
the crown for the concrete pipe are compared to the CANDE predictions in fig. 5.10. The
data presented are the changes in interface pressure as the backfill was placed and
compacted from an elevation 150 mm (6 in.) above the pipe, called the top of the pipe, to
1.2 m (4 ft) above the pipe, called the end of test.

The CANDE predictions for invert interface pressure against the concrete pipe are
consistently low relative to the field measured values, and the disparity increased as the
compactive effort decreased (rammer, vibratory plate, none). The highest field change in
invert pressure occurred in tests 2 and 12 which had compacted stone bedding, no
haunching, and no compaction. Pressures were closer to the field values as the installation

quality improved.
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Interface pressures at the springline were quite low in both the CANDE analyses and
the field data. The larger pressures developing above and below the springline, as shown in
figs. 5.8 and 5.9 indicate that the backfill is arching between the pipe and the trench wall,
and little load travels directly through the backfill at the springline.

Measured interface pressures at the crown of the concrete pipe were similar to those
predicted by CANDE.

The interface pressures calculated with CANDE for the plastic and metal pipe for
test 5 with sandy silt backfill, no compaction, no haunching and compacted bedding (the
saturation of the silty sand bedding may have resulted in a softening of the bedding) are
presented in fig. 5.11. The pressures for the metal pipe were similar and, for clarity, are
only shown at a depth of 6.1 m (20 ft). The trends are similar to the those for the concrete
pipe for the vertical pressures at the top and bottom; however, at the side, substantially
more pressure develops for the flexible plastic and metal pipe than did for the rigid concrete
pipe. The pressure is greatest below the springline. The same information for test 8, with
sandy silt backfill, rammer compaction, haunching and soft bedding, is presented in fig.
5.12. The effect of the soft bedding in reducing the invert pressure and increasing the
vertical pressure at the side of the pipe is significant. Also of note is that the lateral
pressure for test 8 is of a higher magnitude and more centered on the springline than was
the case for test 5. Similar plots for all the metal and plastic pipe tests are included in
appendix A. The appendix figures plot actual data against the CANDE predictions.

Interface pressure predictions for all flexible pipe tests are compared with CANDE
predictions in fig. 5.13. The field data are slightly higher than the predicted data, but the
trends with test variables are quite consistent. In fig. 5.13 the field test data are actually
taken from the gages installed 150 mm (6 in.) over the crown and at the backfill-trench wall
interface. This difference in location from the predictions of pressure at the actual interface
by CANDE could account for some of the mismatch between the data and the predictions.
In general the lateral pressures are of relatively constant magnitude, even though the
deflection varied considerably, upward in some cases and downward in others. This shows
that the lateral pressures required to carry a given load is about constant and the pipe will
deflect until that pressure develops. This emphasizes the importance of compaction to
provide stiff soil and control deflection levels.

188




150
100

(32
o

Vert. pressure, kPa
o

Plastic, top of pipe
Plastic, 1.2 m
Plastic, 6.1 m
Metal, 6.1 m

49 4 0 e

Figure 5.11 Vertical and Horizontal Pressures on Pla
CANDE Analysis, Test 5 - Rammer Compaction
No Haunching, Sandy Silt Backfill

L&ul
5]

......

[

& 0
g

% -50
s -100 E
T -
S 150 F

189

Vert. pressure, psi

Horizontal pressure, psi

0

5 10

4\0 S

0.0..0.0.0-0"0

llsl'llsll[:'.t

\‘—
R ]

N

-IVIIIH;IHH"'lH

0

25 50 75

Horizontal pressure, kPa

Vert. pressure, psi

stic and Metal Pipe,
» Soft Bedding,




fod —
& 150 :._. .......................... 20 8:
o e 15 2
£ 100 gy 18 2
[ -
£ 50 Fre o dow s =
)= - =
g 0 - 0 g
Horizontal pressure, psi
0 5 10
"k:bl% Igl I 'E‘ T 1
v v
o: :
®  Plastic, top of pipe %
o Plastic, 1.2 m N o
v Plastic, 6.1 m : Y 7%
v Metal, 6.1 m i8S i
S S 1 :
[} :
S i i
O v :
Jll'llll}lll[ll!lY
0 25 50 75
Horizontal pressure, kPa
(2] —
£ o g
] : )
5 . S
§ 50 %
o o
s -100 a
% o
g -150 S

Figure 5.12 Vertical and Horizontal Pressures on Plastic and Metal Pipe,
CANDE Analysis, Test 8 — Rammer Compaction, Soft Bedding,
Haunching, Sandy Silt Backfill

190




Interface pressure, kPa Interface pressure, kPa
N
o

Interface pressure, kPa

Interface pressure, kPa

Y - N W A
©c oo o & o

40

30
20
10

-10
-20

- T T T T T T ¥ O Field = tl"enCh Wa" ' =
- a. Plastic, springline A CANDE ]
3 o E
= O o) O .
E o ° 4 A A O
= X 4 2 4 a A A o |4 A 3
3 Rammer Vibratory plate No compaction .
IN 3W 9N 6N 8W 4W 11W 13W 7W 141 2N 12N 5N
Field test, trench width
- T T T . T r O Field - 150 mm over crown B
= b. Plastic, crown A  CANDE ]
; o o O o O © o ]
= O a Q A 4 A | O a 7 7
= A A A A A A .
= Rammer Vibratory plate No compaction 3
IN 3W 9N 6N 8W 4W 11W 13W 7W 14 2N 12N 5N -
Field test, trench width
- T r r ¥ T T T O Field - trench wall T G
= c. Metal, springline " A CANDE ;
5 | o o .
E A 6 A Q A (@) 9 ® O A T
= o A 4 A A 4
= Rammer Vibratory plate No compaction
1IN 3W 9N BN 8W 4W 11W 13W 7W 141 2N 12N 5N
Field test, trench width
- . . . ! ; ; - O Field - 150 mm over crown
= d. Metal, crown A CANDE
- O e -
2 o 2 °© o], 2 A s | ° % 3
= A a A A | & 2 A @ 3
= Rammer Vibratory plate No compaction j

1IN 3W SN 6N 8W

AW 11W 13W 7W 14l

Field test, trench width -

2N 12N 5N

Figure 5.13 CANDE Interface Pressures Compared to Field Pressures
on Plastic and Metal

191

o N E

)

Interface pressure, psi

Interface pressure, psi Interface pressure, psi

Interface pressure, psi




5.2.2.3 Strains

The thrust and bending moment predictions from CANDE were converted to strains
by dividing by the modulus of elasticity of 205 GPa (29,000,000 psi) for steel and 500 MPa
(72,500 psi) for plastic and comparing to the field data in figs. 5.14 and 5.15 for the plastic
and metal pipe respectively. The modulus of plastic is an estimated value, as noted earlier
in this chapter. As noted in section 4.2.6.5, the strain levels for the metal pipe were small
and are not reported. The match between analysis and data is generally good, which is

expected since the deflection predictions matched well.

The comparison of thrust strains in fig. 5.14a suggest that CANDE predicts the
thrust reasonably well for the 900 mm (36 in.) diameter pipe and modestly overestimates the
thrust for the tests with 1,500 mm (60 in.) pipe. The strain predictions at the invert,

springline, and crown of the plastic pipe are also in general agreement with the field data.

The same comparison for the metal pipe in fig. 5.15 also shows that the data are in
general agreement with the CANDE predictions.

53 Summary

In general, both the Burns and Richard elasticity solution and the CANDE finite
element program provide reasonable estimates of pipe response to earth load. The Burns
and Richard solution is somewhat idealized and does not have the ability to treat special
design conditions such as soft haunching, trench installations, or differing embedment
material; however with some empirical adjustments, it is likely that this method could be
developed into a simplified design method. The CANDE finite element program provided
quite good estimates of behavior and is quite powerful in its ability to address special
design situations; however, the complexity of the program and the uncertainty of actual
installation conditions for most pipes, will probably result in CANDE being used only for

special design situations.
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CHAPTER 6
CONSIDERATIONS FOR INSTALLATION PRACTICE

Prior chapters have presented information on the following important issues related
to installation practice for buried pipe:

o Characterization of in situ soils.

° Classification and characterization of backfill materials.
. Guidelines for installation practice.

. Computer modeling of buried pipe behavior.

] Use of CLSM as backfill for buried pipe installations.
° General behavior of buried pipe.

The nature of the pipe soil system makes it difficult to separate installation practice
from design practice and almost any decision regarding one will affect the other. While the
focus of this project is to understand the process of pipe installation, i.e., what happens as
backfill is placed at the side of the pipe, some of the findings are applicable to the design
process. In the following sections, each of the above items is discussed with a primary
focus on installation practice. Design practice is discussed where appropriate.

6.1 In Situ Soils

Installation of a pipe requires stable in situ soil. This includes vertical support of
the bedding and, for trench installations, lateral support by the trench walls. Provisions for
achieving a stable foundation beneath a buried pipe are well defined in installation standards
such as ASTM D 2321 and were not a subject of this study. Characterization of trench
walls for lateral support provided to pipe, especially flexible pipe, is not as well defined.

To address this issue, the designer needs to characterize the soil properties in terms of

stiffness and strength and then assess the affect on the pipe’s performance. The latter issue
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will be affected by the trench width relative to the pipe diameter and by the stiffness of the
in situ soil relative to the backfill soil. These are largely matters considered in flexible pipe
design, where a soil stiffness is required to evaluate lateral soil support to the pipe. In
designing rigid pipes for trench installations, it is often assumed that the pipe receives no

lateral soil support.

In Situ Soil Stiffness — The stiffness of in situ soils is vastly more variable than
that of placed backfill materials. Placed materials must have a range of particle sizes that is
suitable for handling and placing next to a pipe, and the potential for developing adequate
support to the pipe when placed and compacted. Thus, formations with boulders and solid
rock, aged deposits, such as some glacial tills that can be extremely hard when undisturbed,
or excessively compressible materials, such as peats and soft clays, need not receive
consideration as backfill materials. However, as in situ materials, all of these types of soils

must be considered and evaluated.

A second issue in evaluating in situ materials is that pipelines are linear structures
extending over great distances, and often through several soil formations. While complete
evaluation of in situ properties could require many soil borings, few are generally taken

because of the expense.

It is desirable therefore to provide simplified methods for evaluating in situ soils,
such that the results of standard exploration techniques may be used. Perhaps the most
common test conducted as part of soil exploration is the standard penetration test (ASTM D
1586), which evaluates soil by driving a sampler with a known effort. The result of this
test is reported as the blows required to advance the sampler 300 mm (12 in.). Alternatively,
either by the use of unconfined compression test (ASTM D 2166) or penetrometers, the
strength of a fine-grained soil may be estimated relatively quickly. AWWA Manual M 45
(AWWA, 1996), Fiberglass Pipe Design, has published a table of E’ values that are based
on the results of the standard penetration test (SPT) or the unconfined compression strength
of the soil (table 2.14). Given the work of chapter 3 (See section 3.4 and fig. 3.13, and
section 6.2), which provides support for the use of the equality E* = M, this table can be
used in empirical- or elasticity-based design methods, and should be a substantial aid to

designers who have SPT or unconfined compression data available. The one-dimensional

196




modulus may also be related to Young’s modulus through Eq. 2.5, allowing the use of

correlations between modulus and other soil properties.

A key consideration when evaluating in situ soil stiffness is that the condition of the
soil at the time of testing may not be representative of the conditions at all times. Field
tests 9 to 14, conducted at the clay site provide a good example of this. The undisturbed
clay was relatively stiff, and for most of these tests, the soil strain gages indicate that lateral
movement of the trench wall was inconsequential; however, during field test 11, there were
heavy rains and the site became inundated. At the end of the test the trench, walls had
moved outward 4 to 6 mm (0.15 to 0.25 in.). This is a relatively small movement, but it
occurred over a period of a few days, and is indicative of ongoing movements that would
continue in a permanent installation. Thus, the designer must consider potential changes in

natural conditions.

Combined Pipe Support from Backfill and In Situ Soil — Also required for
flexible pipe design is an evaluation of the affect of the in situ soils in providing support to
a pipe. In a very narrow trench with little clearance between the trench walls and the pipe,
the pipe deflection may be controlled mostly by the stiffness of the in situ soil; while in a
very wide trench, the stiffness of the in situ soil will be inconsequential. Leonhardt (1979)
developed Eq. 2.10 to address this issue and AWWA Manual M 45 (AWWA 1996) adopted
a similar approach in the form of a table of influence factors for the in situ soil. The basis
of both of these approaches is that the in situ soil is inconsequential for trench widths wider
than about five pipe diameters. The field tests were consistent with this previous approach.
In tests with wide trenches, with a width of about three pipe diameters for the 900 mm (36
in.) pipe, there was still an influence of the trench wall on the pipe behavior. The lateral
soil stresses at the trench wall were of similar magnitude for the tests with this condition as
for the narrow trench tests, with a width of about 1.6 pipe diameters (See fig. 4.44). While
the assumption of needing a trench width of five pipe diameters would appear to be
conservative, the cost of excavating wide trenches is expensive, especially with large
diameter pipe. The method of Eq. 2.10, or AWWA Manual M 45 may be used in design

for the time being, but better solutions are desired.
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6.2 Backfill

Soil Groupings for Design — Many installation standards for buried pipe (ASTM D
2321, ASTM D 3839, AWWA Manual M 45, and AASHTO SIDD standard concrete pipe
installations) identify three or four general soil groups within which the soils have similar
characteristics as pipe backfill materials. This approach was also adopted by Howard in
developing his table of values for the modulus of soil reaction. The typical groups, as

discussed in section 2.2.1, generally include:

] Angular processed material, such as crushed stone (except for the SIDD soil groups),
0- Gravels and sands with minimal fines content,

. Soils with fines but with a limit on total fines content and/or low plasticity, and

. Soils with unlimited fines content, but low plasticity.

Soils with high plasticity such as CH, and in some systems MH, while included in

some soil design groupings, are generally considered unsuitable for pipe backfill material.

Overall, the approach of grouping soils into three or four broad categories has
worked well, but it is desirable to adopt a single system of soil groups for pipe backfill that
will apply to all types of pipe. The two soil groupings of most interest, since they are
associated with stiffness properties that can be used in design, are the SIDD soil groups
adopted by AASHTO for concrete pipe design and the Howard soil groups. The differences
between these two groups in terms of gradation and plasticity were discussed in section
2.2.1, where it was shown that the SIDD soil groups tend to differentiate on the basis of
clay versus silt (above or below the A-line, fig. 2.8), while the Howard soil groups tend to
differentiate on the basis of fines content (more or less than 30 percent coarse grained
material). There is not a clear choice for one group over the other; however, since the soil
properties in the SIDD groups were developed for finite element analysis, and are the basis
for the stiffness recommendations in this report (table 3.6), it is proposed that these groups
be adopted for all types of pipes. The one shortcoming of this is that no hyperbolic
properties have been developed for angular crushed stone materials. The properties of the

SW soils could be used until more appropriate values become available. Although empirical
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in nature, the Howard recommendations of E’ could also be used as a basis for extrapolating
the SW values to values for crushed stone.

Also of interest is the approach of the Water Research Centre in the United
Kingdom (table 2.9) which distinguishes between single size gravel and graded gravel. The
single size gravel has the benefit of having a relatively high stiffness when placed loosely
(note the relatively high values of loose density for soils 1 and 4 in fig. 3.3). The results of
the laboratory soil box tests confirm this (see fig. 4.4 and individual test results). This high
stiffness with minimal effort can be a significant aid when installing backfill in difficult
situations or without inspection. The one concern with single size materials is that they
have significant void space and thus are susceptible to migration of fine-grained soil from
the adjacent in situ soils. Action must be taken to assess the likelihood of migration and, if
necessary, take action to prevent it by using a geosynthetic filter fabric or control of the
relative gradations of adjacent soils. ASTM D 2321 provides guidance on the latter subject.

Empirical and True Soil Properties: E’ versus M, — Preceding discussions have
recommended the adoption of the constrained, or one-dimensional modulus, M, as a design
soil modulus in lieu of the historically used modulus of soil reaction, E’. This is highly
desirable as it allows testing for soil properties rather than back calculation from buried pipe
tests to evaluate different types of soil. However, a large body of literature exists based on
the modulus of soil reaction and some of this information is useful in characterizing soil
stiffness for design even when using the constrained modulus. A comparison of the Howard
values of E’ with the Selig/SIDD hyperbolic soil properties was presented in fig. 3.13. This
suggests that at low levels of applied stress the two sets of properties match reasonably
well, and indeed, the data base from which Howard developed his recommended values of
E’ was based on pipe buried at modest depths of fill. While it is desirable to move away
from E’ as a design parameter and to take advantage of the available work related to it, the
relationship E* = M is recommended for use until more work is completed for values of
M..

Reliability — The reliability of buried pipe installations is a significant issue. This
requires an honest assessment by a designer about the quality of installation practice that
will be exercised in the field. Examination of table 3.6 shows that the modulus of a soil at

a density of 90 percent of maximum standard Proctor is about one half the modulus of a
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soil at 95 percent of maximum density, and the modulus of a soil at 85 percent of maximum
density is one half or less that of a soil at 90 percent of maximum density. These
significant changes suggest that the designer must evaluate the sensitivity of the installation
to achieving the design soil stiffness, and must consider the likelihood of actually achieving
the design soil stiffness during construction. In future development of design procedures for
flexible or rigid pipes, introduction of a strength reduction factor on the soil stiffness term

to account for sensitivity should be considered.

The selection of the most economical backfill and treatment in design is related to
reliability as well as cost and deserves considerable attention. Crushed rock and SW
materials provide good support to a pipe, and at high percent compaction will allow the use
of the least expensive pipe. In addition, these materials have good stiffness properties even
at low percent compaction. However, coarse grained backfills are often processed materials
and are extremely expensive in some locations (Louisiana and Florida for example). Thus it
is often economically desirable to use finer grained processed backfills or in situ soils as
pipe embedment. Finer grained materials, such as the silty sand used in the field tests, are
sensitive to moisture, are inherently less stiff at the same percent compaction as a coarser
grained soil, and produce more deformation in flexible pipe during backfill compaction.

The field tests clearly demonstrate that these materials may be successfully used as pipe
backfill; however, they also demonstrate some of the problems that are likely. The
saturation of the silty sand bedding in test 5, and the increased deflection in test 7, in which
the pipe was installed without haunching are indications of the types of problems that can
occur. Field tests with the stone backfill was subjected to the same conditions without

problems.

The above discussion raises the question: What is the most economical pipe
installation? It is easy to think that a less expensive pipe will be more economical;
however, the total installation cost, which includes the cost of purchasing, placing, and
compacting backfill and the cost of inspection, should be considered. High-quality
installations should always be inspected. As noted above, the design soil stiffness is very
sensitive to just a 5 percent variation in level of compaction. The cost of this inspection
should be balanced against the cost of a more expensive pipe with backfill compacted to a

less stringent requirement, and perhaps with reduced inspection. It may be more economical

200




to purchase a more expensive pipe and reduce the sensitivity of the installation to variations
in construction practice.

6.3 Guidelines for Installation Practice

There are many important steps that must be taken to achieve a quality buried pipe
installation. A few of these steps and the related findings of the study are discussed here.

Trench Width — The previous section discussed the effects of trench width in terms
of soil support to the pipe. There are many other considerations that affect the design
decision of trench width as well. Traditionally, designers specify that trench widths be kept
as narrow as possible to minimize excavation cost and the load predicted by the Marston
trench load theory. Specifications sometimes allow trench widths as narrow as the pipe
outside diameter plus 300 mm (12 in.). The actual criteria for trench width should be based
on constructability. Working material into the haunch and compacting fill at the sides of
the pipe are far more critical than minimizing the trench load. While wider trenches cost
more to excavate and backfill, they must be used if required to properly construct the
embedment zone. The findings of the project regarding trench width were:

1. For the 900 mm pipe the working space in the narrow trench (pipe outside diameter
plus 600 mm, 24 in.), the working space was the minimum acceptable but adequate
only because the trench was benched near the top of the pipe (See figs. 4.37 and
4.38).

2. For the 1,500 mm pipe, the narrow trench condition (pipe outside diameter plus 600
mm, 24 in.) was clearly inadequate to allow room for joining the pipe, haunching,
and compacting the backfill, the intermediate trench (pipe outside diameter plus 900
mm, 36 in.) was marginally acceptable.

(3]

For both sizes of the pipe, the wide trench (pipe outside diameter plus 1800 mm, 72
in.) provided good working space.

In addition to the findings of the field tests, the conditions of a particular installation
need to be considered. If CLSM is used as backfill then the trench need only be wide
enough to allow placing and joining the pipe, because haunching and compaction are not
required. If rounded pea gravel, or similar single sized material that is relatively free
flowing is used then trenches could also be narrowed. The space between the trench wall

and the springline should be wider than the compaction equipment. The rammer used in the
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field tests could be used for compaction in spaces as narrow as 300 mm, while compaction

with the vibratory plate required a space at least 450 mm.

Bedding — Traditionally bedding under a pipe has been compacted, primarily as a
method of controlling the pipe grade by minimizing settlement after construction (and
perhaps also because it is easy to compact the bedding since the pipe does not get in the
way). The SIDD installations adopted by AASHTO have incorporated a recommendation
to leave the middle bedding, directly under the bottom of the pipe (fig. 2.4) and
uncompacted. The computer modeling indicates that this reduces the load on the pipe and
the invert bending moments. It is important that the outer bedding still be compacted to
provide support to the haunch area of the pipe and to provide an alternate vertical load path
around the pipe bottom. The field tests suggest that leaving the bedding soft does reduce
the interface pressures at the pipe bottom. The computer modeling (chapter 5) confirms this
benefit. Even though the invert interface pressures that were measured in the field were
consistently higher than predicted by the model, both field and computer model demonstrate

lower invert pressures with uncompacted bedding.

Haunching — Some effort at haunching should always be specified. The bending
moments in the field tests and the computer models are significantly greater in the
unhaunched installations. In addition, the failure to provide haunching incorporates a
significant void in the backfill that can lead to longer term soil movements and
corresponding reduced support to the pipe. In the field and laboratory tests, slicing backfill
into the haunch area with shovels was shown to be an effective method of providing
haunch support. Tampers, such as used on field tests 12 to 14 were also very effective. A
large-faced tamper, 75 by 150 mm (3 by 6 in.), was effective for the silty sand and a small-
faced tamper, 25 by 75 mm (1 by 3 in.) was effective for the stone. A small faced tamper
is imperative for angular materials to generate sufficient force to overcome the particle
interlocking. A tamper attached to a long rod can allow a laborer to be out of the trench

while tamping the haunch.

Haunching is best accomplished after the pipe is set in position, by placing part of
the first lift of backfill, working it into the haunches and then placing the remainder of the
lift. Haunching effort cannot be effectively applied if backfill is placed so high on the pipe

that it blocks access to the haunch zone.




Compaction of Backfill - Some compactive effort is always desirable. Even
though some coarse-grained backfill materials may achieve 85 percent to 90 percent of
maximum Proctor density when placed with little effort, there are undoubtedly voids that
develop around pipes and against trench walls when the material is first placed. This
appears to be particularly true with the deep corrugations of the plastic pipe. A modest
effort at compaction (perhaps a simple effort at shovel slicing, although this was not
evaluated during the tests) would likely eliminate the 1 percent jump in deflections observed
in tests 2 and 5.

Compaction induced deflections (peaking) clearly increase as the backfill materials
become finer grained. In the field tests the peaking deflection with silty sand backfill was
about three times the peaking deflection with the stone for the same number of coverages of
the compactor. While the magnitudes of the peaking deflections (up to 2 percent change in
diameter, see fig. 4.40) were not excessive, they were significant, and designers should be
aware of this issue. Larger compaction equipment, such as walk behind or ride on rollers,
or the use of lower stiffness pipe, could easily result in excessive peaking, or distortion of
the pipe shape during compaction. Limits on upward peaking because of compaction effects
should be lower than limits on downward deflection caused by earth load. This
recommendation is made because peaking deflection is essentially the result of a point load
and can result in higher local deflections and stresses than deflection caused by earth load.

Similar to leaving the bedding uncompacted under the pipe, there is merit in leaving
the portion of the first backfill lift that covers the pipe uncompacted directly over the pipe
as well. The computer model suggests that this drops the interface pressure on the top of
the pipe, meaning that load is transferred into the pipe further out toward the sides of the
pipe which should reduce the bending moments in the pipe.

6.4 Computer Modeling

The field tests were successfully modeled using the finite element computer program
CANDE. A consistent approach was taken for all of the tests, and the field data matched
the computer predictions quite well. A number of recommendations are made here:

1. Interface pressure readings and penetrometer testing indicate that with soil backfill,
even with significant haunching effort, there is always a soft spot about 30 degrees
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from the invert. This was modeled with the “void” zone shown in figs. 5.1 and 5.2.
It is recommended that this zone be incorporated in all models of buried pipe
installations unless the backfill is CLSM.

2. The use of concentrated forces has been shown to be an effective method to model
compaction effects, and a simplified expression for computing these forces was
developed; however, a soil model should be developed that would allow application
of compaction forces directly to the soil. No practical method of accomplishing this
has yet been incorporated into a generally available computer program such as
CANDE.

LI

When a soil layer is placed in the CANDE program, it is assigned the properties of
the final compacted material. In actual construction, it is placed loosely and then
compacted. This means that the weight of the soil is imposed on the pipe when the
soil strength and stiffness are low, and it is then compacted to improve the
properties. This type of modeling can have a significant effect on the loads imposed
on a pipe, particularly in a trench installation. The apparent “arching” of load
between the trench wall and the pipe noted for concrete pipes in section 5.2.2 (figs.
5.8 and 5.9) could be significantly reduced if the soil properties are those of loose
soil when the weight of the soil is applied, and then increased to dense properties.

4. The behavior of the plastic pipe was best modeled using a lower modulus of
elasticity than the specified short term value in AASHTO. This suggests that the
viscoelastic nature of thermoplastics has an effect on pipe response during
backfilling.

6.5 CLSM

The field tests show that CLSM can be an excellent backfill material. It placed
easily and formed a stiff, uniform pipe support. Study of CLSM was not a key goal of this
project; however, several recommendations and suggestions for further research can be

made.

Mix Design — The ASTM flow test, Provisional Standard PS-28, is an excellent
measure of the flowability of the mix. The study showed that flowability is derived largely
from fly ash, not water. Mixes with high water contents tend to have the water segregate
and do not flow well. The drawback to high fly ash content is that the pozzolanic nature of
fly ash contributes to the long term strength gain and inhibits excavatability of the material.
The mix design used in this study, which included 45 kg/m> (76 1b/yd®) cement and 244
kg/m® (412 Ib/yd®) of fly ash had excellent flowability characteristics but its strength made

it difficult to excavate. It may be appropriate to reduce the cement content.
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Placing CLSM - Placing pipe up on blockings or bags as was done for the field
tests in this study assures that the CLSM gets under the pipe and provides uniform support.
The blocking should not be overly stiff, i.e., polystyrene foam would be desirable, wood
would probably be acceptable, and concrete blocks would be unacceptable. If blocking the
pipe is found too time consuming, it should be acceptable to place the pipe directly on the
bedding as shown in fig. 2.5 taken from the clay pipe installation standard ASTM C 12;
however, the CLSM will have to be delivered to both sides of the pipe. Installation with
CLSM requires some control over when the pipe is backfilled. The pipe should not be
further backfilled until the CLSM embedment has a greater stiffness than the bedding.
Adding backfill when the CLSM is still soft, may actually produce a hard bedding situation
and a line load at the invert of the pipe, since the CLSM in the haunch zone could be quite
soft and not capable of providing good support. This should be an area of future study.

Controlling flotation is a key issue in the use of CLSM. In the field test, the pipe
were weighted with gravel bags; however, this is not appropriate for an actual construction
project. A quickly installed bracket that holds down the top of the pipe by bracing against
the trench wall could be developed or, short sections culverts could be (carefully) held down
with construction equipment. Because of the large magnitude of the flotation forces,
placing the CLSM in multiple lifts will almost always be required. In the field tests, the
plastic pipe, with deep corrugations developed a mechanical interlock with the first lift of
CLSM that kept it from floating while placing the second lift. This suggests that studs
could be welded to steel pipes, or could be strapped to plastic pipes to similarly form a
mechanical bond to a first lift. This type of system could be developed to serve both the
function of supporting the pipe off the bedding and providing anchorage from flotation.

The two deliveries of CLSM to the field tests for this project were quite different in
strength and flowability and hence required mix adjustment in the field. Thus, checking the

flow characteristics at the time of placement should be standard practice.

Quality Control — The use of test cylinders for strength testing may not be suitable
as a quality control procedure. The low strength mixes, which are desirable for
excavatability, were fragile and very difficult to test at an age of 7 days, and could not have
been tested at earlier ages. At an age of 7 days, it is likely that a pipe or culvert has

already been backfilled and the test results would serve as documentation of the material
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rather than a true quality control test. During the conduct of the field tests in this study, the
density of the CLSM was checked with a nuclear density gage. This has merit as a field

control procedure since the result of the test is known immediately.

It is necessary to decide what CLSM characteristics are important and require quality
control. In structural design of buried pipe and culverts, a dense soil backfill is considered
to be a high quality pipe support. In the field tests, the in place density of the CLSM was
2,130 kg/m> (133 pef) which is representative of a broadly graded dense sand. This
suggests that the flowable nature of the CLSM is actually a delivery system to place soil,
rather than a cementitious material dependent on strength gain. This philosophy allows field
testing to use geotechnical type tests that can be conducted quickly with results available
right away.

During the field tests, the excess water hydrated out of the CLSM quickly and the
material could be walked on within two hours. There were no problems in placing the
second lift after 2 hours, and, had it not been the end of the work day, it is expected that
there would have been no problems continuing normal backfilling after the second pour had
set for 2 hours.

Air-Modified CLSM - Although not tested in this study, McGrath and Hoopes
(1997) reported on the use of air-modified CLSM. This is CLSM with high air content,
about 30 percent by volume, to produce flowable mixes without depending on fly ash. This
has the benefit of reducing the long-term strength gain that results because of the pozzolanic
reaction of the fly ash. The draw back to air-modified CLSM is that it depends on the
strength gain caused by the curing of the cement to develop strength and stiffness. This
material could not be backfilled after 2 hours.

6.6 General Behavior of Buried Pipe

The relatively high compaction deflections generated in the computer model of the
1,500 mm (60 in.) plastic pipe relative to the 900 mm (36 in.) plastic and metal pipe and
the 1,500 mm (60 in.) diameter steel pipe, that were not observed in the field data, suggest
that this profile design (a solid wall with a bonded tube as a rib) mobilizes a greater

longitudinal length of pipes to resist compaction forces than does the corrugated pipe wall.
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It may be appropriate to introduce design conditions based on how great a length of pipe is
developed in resisting concentrated (i.e., compaction) loads.

The longitudinal strains in the 900 mm diameter plastic pipe were about 50 percent

of the circumferential strains. This is a significant level which means that consideration of

longitudinal stresses may be necessary for buried pipe.
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CHAPTER 7
CONCLUSIONS

This report presents the results of an in depth evaluation of installation practice for
buried pipe. The current practice of AASHTO member States was surveyed, as well as the
current practice of pipe suppliers and standards organizations such as ASTM and AASHTO.
Additional insight into backfill materials, and pipe behavior during installation was
developed through laboratory backfill characterization tests, laboratory soil box tests, full-
scale field tests, and computer modeling of test results. The main conclusions of the study

are:

1. The soil properties used for the development of the SIDD concrete pipe installations
are recommended as design properties for all types of pipes. These properties were
developed for the hyperbolic model of soil behavior that is widely used for culvert
analysis.

2. For simplified design use of the constrained modulus, M, is recommended, in lieu
- of the historical, but empirical modulus of soil reaction, E’. Design values for the

constrained soil modulus are presented. The introduction of the table of soil values
for M, allows designers to assess the impact of using lower quality backfill materials
than currently allowed by AASHTO specifications and to consider the effect of
change in soil modulus with increasing confinement. Although it has been clearly
demonstrated that fine grained soils have inherently lower stiffness, are sensitive to
moisture, and require greater compactive effort to install, there are installation
conditions where use of such materials may be economical provided proper
installation controls are in place.

LI

Pipe bedding should be left uncompacted under the middle third of the pipe
diameter. This has been shown to be an effective method of reducing invert bending
moments, particularly for rigid pipes.

4. Finite element modeling with the computer program CANDE has been shown to be
an effective tool to understand pipe behavior during installation. It is important to
model the actual installation conditions, such as the soft area in the lower haunch
and compaction effects.

5. CANDE is the only generally available finite element computer program for culvert
design at the present time. Technical improvements, such as the introduction of soil
with loose soil properties and a later conversion to compacted properties, have been
proposed and a better user interface would greatly increase the utility of the
program. Of particular importance is access to the SIDD soil properties. Currently,
use of these properties in CANDE requires manual input by the user. CANDE
should be modified to make these properties available as defaults.
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6. Longitudinal effects should be considered in design. Longitudinal strains in some
pipe are significant, and the response to compaction effects involves the longitudinal
stiffness of the pipe.

7. Controlled low strength material, CLSM, has been shown to be an effective backfill
material. Recommendations for design and implementation of CLSM installations
have been developed.

Overall, pipe performance is significantly controlled by installation practice and soil
properties. This project has demonstrated that soil properties vary widely with relatively
small changes in density. Quality control of construction practices is a key issue to be
assessed by the designer when selecting pipe and backfill materials. It is believed that
significant improvements in long term performance and reductions in installed cost will be
achieved by improved contractor education and greater enforcement of specifications. The
effort to accomplish this may appear expensive; however, the cost of investigating and
repairing just an occasional failure, and the cost of maintaining pipes that were installed
poorly, are so significant that any expense caused by increased constructioh costs should be
saved quickly through elimination of lifetime costs.
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APPENDIX

CANDE ANALYSES AND COMPARATIVE DATA FOR CONCRETE, PLASTIC,
AND METAL PIPE - ALL FIELD TESTS

This appendix contains detailed results from the finite element model of each of the
field tests using the computer program CANDE. One figure is presented with deflections,
interface pressures, bending moments, thrusts, and shears for each type of pipe and each
field test; a total of 42 analyses. Details of the procedures used for the analyses were
presented in chapter 5. For comparison purposes, field data have been added whenever
available. The keys and formatting of all figures is the same, even if no field data were
available.
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